Limiting profile of solutions of quasilinear parabolic equations with flat peaking


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper deals with energy (weak) solutions u (t; x) of the class of equations with the model representative

\( \left(\left|u\right|{p}^{-1}u\right)t-\Delta p(u)=0,\kern0.5em \left(t,x\right)\in \left(0,T\right)\times \varOmega, \varOmega \in {\mathrm{\mathbb{R}}}^n,n\ge 1,p>0, \)

and with the following blow-up condition for the energy:

\( \varepsilon (t):= {\int}_{\Omega}{\left|u\left(t,x\right)\right|}^{p+1} dx+{\int}_0^t{\int}_{\Omega}{\left|{\nabla}_xu\left(\tau, x\right)\right|}^{p+1} dx d\tau \to \infty \mathrm{as}\;t\to T, \)

where Ω is a smooth bounded domain. In the case of flat peaking, namely, under the condition

\( {\displaystyle \begin{array}{cc}\varepsilon (t)\le F\upalpha (t){\upomega}_0{\left(T-t\right)}^{-\upalpha}& \forall t0,\upalpha >\frac{1}{p+1}, \)

a sharp estimate of the profile of a solution has been obtained in a neighborhood of the blow-up time t = T.

About the authors

Yevgeniia A. Yevgenieva

Institute of Applied Mathematics and Mechanics of the NAS of Ukraine

Author for correspondence.
Email: yevgeniia.yevgenieva@gmail.com
Ukraine, Slavyansk

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature