Separating transformation and extremal problems on nonoverlapping simply connected domains
- Authors: Bakhtin A.K.1
-
Affiliations:
- Institute of Mathematics of the NAS of Ukraine
- Issue: Vol 234, No 1 (2018)
- Pages: 1-13
- Section: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/241739
- DOI: https://doi.org/10.1007/s10958-018-3976-9
- ID: 241739
Cite item
Abstract
We consider the well-known problem of maximum of the functional
\( {I}_n\left(\upgamma \right)={r}^{\upgamma}\left({B}_0.0\right)\prod \limits_{k=1}^nr\left({B}_k,{a}_k\right), \)![]()
where B0, …, Bn are pairwise disjoint domains in \( \overline{\mathrm{\mathbb{C}}} \), a0 = 0, |ak| = 1, \( k=\overline{1,n} \), are different points of the circle, γ ∈ (0, n], and r(B, a) is the inner radius of the domain \( B\subset \overline{\mathrm{\mathbb{C}}} \) relative to the point a. In the case of simply connected domains for n=2, 3, and 4, we have obtained the solution of this problem for the maximum interval of values of the parameter γ.
About the authors
Aleksandr K. Bakhtin
Institute of Mathematics of the NAS of Ukraine
Author for correspondence.
Email: abahtin@imath.kiev.ua
Ukraine, Kiev
Supplementary files
