Double Cosets of Stabilizers of Totally Isotropic Subspaces in a Special Unitary Group. I
- Authors: Gordeev N.1, Rehmann U.2
-
Affiliations:
- St.Petersburg State University
- Bielefeld University
- Issue: Vol 232, No 5 (2018)
- Pages: 647-661
- Section: Article
- URL: https://bakhtiniada.ru/1072-3374/article/view/241382
- DOI: https://doi.org/10.1007/s10958-018-3895-9
- ID: 241382
Cite item
Abstract
Let D be a division algebra with a fixed involution, and let V be the corresponding unitary space over D with T -condition (see N. Bourbaki, Algèbre). For a pair of totally isotropic subspaces u, v ≤ V, the double cosets PuγPv of their stabilizers Pu, Pv in Γ = SU(V ) are considered. A description of the cosets PuγPv in terms of the intersection distance din(u, γ(v)) and the Witt index of u + γ(v) is given.
About the authors
N. Gordeev
St.Petersburg State University
Author for correspondence.
Email: nickgordeev@mail.ru
Russian Federation, St.Petersburg
U. Rehmann
Bielefeld University
Email: nickgordeev@mail.ru
Germany, Bielefeld
Supplementary files
