Quantum Effects at a Proton Relaxation at Low Temperatures


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Quantum effects during migratory polarization in multi-well crystals (including multi-well silicates and crystalline hydrates) are investigated in a variable electric field at low temperatures by direct quantum-mechanical calculations. Based on analytical solution of the quantum Liouville kinetic equation in the linear approximation for the polarizing field, the non-stationary density matrix is calculated for an ensemble of non-interacting protons moving in the field of one-dimensional multi-well crystal potential relief of rectangular shape. An expression for the complex dielectric constant convenient for a comparison with experiment and calculation of relaxer parameters is derived using the nonequilibrium polarization density matrix. The density matrix apparatus can be used for analytical investigation of the quantum mechanism of spontaneous polarization of a ferroelectric material (KDP and DKDP).

作者简介

V. Kalytka

Karaganda State Technical University

编辑信件的主要联系方式.
Email: kalytka@mail.ru
哈萨克斯坦, Karaganda

M. Korovkin

Institute of Natural Resources at National Research Tomsk Polytechnic University; National Research Tomsk State University

Email: kalytka@mail.ru
俄罗斯联邦, Tomsk; Tomsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016