Analytical Expressions for the Differential Elastic Scattering Cross Sections of Nonidentical Nuclear Particles with Channel Spins 3/2 and 5/2


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper, general analytical expressions are obtained for the differential elastic scattering cross sections of two nuclear particles with allowance for spin-orbit splitting for channels with the half-integer spins 3/2 and 5/2, which are parameterized with respect to the orbital quantum number l. This representation makes it possible to take into account explicitly a definite, energy-dependent number of scattering partial waves and to consider the relative contribution of each partial wave. The obtained expressions can be used when performing phase shift analysis in elastic scattering of nonidentical particles, for example, N2H, N6Li, 2H7Li, and 2H9Be at low energies.

Авторлар туралы

A. Tkachenko

Fesenkov Astrophysical Institute of the National Center for Space Research and Technology of the Aerospace Agency of the Ministry of Defense and the Aerospace Industry of the Republic of Kazakhstan; Al Farabi Kazakh National University, Ministry of Education and Science of the Republic of Kazakhstan

Хат алмасуға жауапты Автор.
Email: tkachenko.alessya@gmail.com
Қазақстан, Almaty; Almaty

N. Burkova

Al Farabi Kazakh National University, Ministry of Education and Science of the Republic of Kazakhstan

Email: tkachenko.alessya@gmail.com
Қазақстан, Almaty

S. Dubovichenko

Fesenkov Astrophysical Institute of the National Center for Space Research and Technology of the Aerospace Agency of the Ministry of Defense and the Aerospace Industry of the Republic of Kazakhstan; Al Farabi Kazakh National University, Ministry of Education and Science of the Republic of Kazakhstan

Email: tkachenko.alessya@gmail.com
Қазақстан, Almaty; Almaty

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019