Diagnostic of a Solar Flare via Analyses of Emission in Spectral Lines of Highly Ionized Iron


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An analysis of the dynamics of the electron temperature of the solar atmosphere in regions where solar flares appear is presented. The temperatures are estimated from the emission in spectral lines of ions with various degrees of ionization. The emission of ionized helium and highly ionized iron was used. Images of preflare states and of flares from the archive of the American SDO spacecraft are analyzed. A solar flare is usually preceded by the registration of a bright glowing structure above the action region, with a temperature exceeding that of the corona. This preflare structure (~1010 cm) is identified with the development of a system of currents, which, according to numerical simulations, is responsible for the accumulation of energy above the active region before the flare. After several tens of hours of a slow increase in the brightness of the preflare glow in the 94 Å iron (FeXVIII) line, the emission in the 193 Å line of FeXXIV increases sharply, indicating a flare-like growth of the temperature up to at least 20 MK. This growth of the emission coincides with the onset of the solar flare. The observed dynamics of the emission in spectral lines of highly ionized ions is consistent with an electrodynamic model of a solar flare based on the accumulation of magnetic energy in a current sheet above the active region and the explosive release of the stored energy. Studies of mechanisms for solar flares are of special importance in connection with the discovery of solar cosmic rays. Information from the worldwide network of neutron monitors and from the GOES spacecraft has made it possible to firmly state that the source of solar rays is solar flares, not shocks generated by such flares. It cannot be ruled out that a similar mechanism, not shocks, is also responsible for the acceleration of cosmic rays in the Galaxy.

作者简介

I. Podgorny

Institute of Astronomy

编辑信件的主要联系方式.
Email: podgorny@inasan.ru
俄罗斯联邦, Moscow, 109017

A. Podgorny

Lebedev Physical Institute

Email: podgorny@inasan.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018