Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 61, № 5 (2017)

Article

Masses of the visual components and black holes in X-ray novae: Effects of proximity of the components

Petrov V., Antokhina E., Cherepashchuk A.

Аннотация

It is shown that the approximation of the complex, tidally distorted shape of a star as a circular disc with local line profiles and a linear limb-darkening law, which is usually applied when deriving equatorial stellar rotation velocities from line profiles, leads to overestimation of the equatorial velocity Vrot sin i and underestimation of the component mass ratio q = Mx/Mv. A formula enabling correction of the effect of these simplifying assumptions on the shape of a star is used to re-determine the mass ratios q and the masses of the black holes Mx and visual components Mv in low-mass X-ray binary systems containing black holes. Taking into account the tidal–rotational distortion of the stellar shape can significantly increase the mass ratios q = Mx/Mv, reducing Mv, while Mx changes only slightly. The resulting distribution of Mv attains its maximum near Mv ≃ 0.35M, in disagreement with the results of population synthesis computations realizing standard models for Galactic X-ray novae with black holes. Possible ways to overcome this inconsistency are discussed. The derived distribution of Mx also differs strongly from the mass distribution for massive stars in the Galaxy.

Astronomy Reports. 2017;61(5):377-386
pages 377-386 views

Influence of photoelectrons on the structure and dynamics of the upper atmosphere of a hot Jupiter

Ionov D., Shematovich V., Pavlyuchenkov Y.

Аннотация

A self-consistent, aeronomic model of the upper atmosphere of a “hot Jupiter” including reactions involving suprathermal photoelectrons is presented. This model is used to compute the height profiles of the gas density, velocity, and temperature in the atmosphere of the exoplanet HD 209458b. It is shown that including suprathermal electrons when computing the heating and cooling functions reduces the mass loss rate of the atmosphere by a factor of five.

Astronomy Reports. 2017;61(5):387-392
pages 387-392 views

Probing cosmic plasma with giant pulses from the crab nebula pulsar

Rudnitskii A., Popov M., Soglasnov V.

Аннотация

A review and comparative analysis of results from studies of the effects of scattering on the interstellar medium using giant pulses of the Crab Nebula pulsar (B0531+21) are presented. This analysis was based on eight epochs of Very Long Baseline Interferometry (VLBI) radio observations carried out as part of the scientific program of the Radio Astron mission during 2011–2015. The scintillation timescale tscint and spectral index γ for the power-law energy distribution of the pulses were obtained for each observing epoch. The measured scintillation timescales are tscint = 7.5−123 s at 1668 MHz and tscint = 2.9 s at 327 MHz. The spectral indices are −1.6...−2.5. The frequency and time characteristics of the scattering were measured using two independent methods: based on the decorrelation bandwidth Δνd and the scattering timescale τSC. The angular size of the scattering disk θH of the pulsar was obtained, the phase structure functions constructed, and the distance to the effective scattering screen estimated. The derived diameter of the scattering disk θH at 1668 MHz ranges from 0.4 to 1.3 mas, while the scatteringdisk diameter at 327 MHz is 14.0 mas. The measured distance to the effective scattering screen ranges from 0.7 to 1.9 kpc, and varies from observation to observation in the same way as the scattering timescale and decorrelation bandwidth: τSC ≈ 0.9−5.8 μs and Δνd ≈ 40.7−161 kHz at 1668 MHz. The scattering timescale and decorrelation bandwidth at 327 MHz are 2340 μs and 68 Hz.

Astronomy Reports. 2017;61(5):393-405
pages 393-405 views

Secondary dynamical spectra of pulsars as indicators of inhomogeneities in the interstellar plasma

Safutdinov E., Popov M., Gupta Y., Mitra D., Kumar U.

Аннотация

Observations of ten bright pulsars were obtained on the Giant Meter-wavelength Radio Telescope (GMRT, India) in order to study the effects of scattering of their radio waves by contructing and analyzing secondary dynamical spectra. The observations were conducted at 610 and 1420 MHz using a digital spectral analyzer operating in a real-time regime. The frequency resolution was 32.5 or 65.1 kHz, and the readout time was from 61.44 to 512 μs. Archival data for five pulsars at 327 MHz were also used. Procedures for normalizing the spectra and for constructing the secondary dynamical spectra were developed. Parabolic arcs were found in the secondary spectra of four pulsars (B1642-03, B1556-44, B2154+40, and B2021+51). The curvature of these arcs can be used to determine the distance to the effective scattering screen. In all cases, these screens are located relatively near the pulsars themselves.

Astronomy Reports. 2017;61(5):406-416
pages 406-416 views

The distance to the pulsar B1818-04 and the distribution of turbulent interstellar plasma toward B0833-45, B1818-04, and B1933+16

Pynzar’ A.

Аннотация

The dependence of the scatter broadening of extragalactic sources on the dispersion measures of distant pulsars observed along nearby lines of sight and the dependence of broadening of pulsar pulses on the scatter broadening observed for the pulsars themselves and for extragalactic sources observed along nearby lines of sight are constructed and analyzed. These dependences can be used to study turbulent plasma in the Galaxy. The effective scattering layer in the direction toward the pulsar B1933+16 is located in the Sagittarius arm at a distance of ≈3.4 kpc from the observer, and has an extent of ≈0.55 kpc. The scatter broadening and pulse broadening of B0833-45 are due to the turbulent medium in the shell of the Gum Nebula. The distance from the pulsar to the center of the scattering layer is≈43 pc. Data on scattering of the radiation of the pulsar B1818-04 and of the extragalactic source J1821-0502, together with data on the distribution of OB stars in the direction toward this pulsar, are used to show that the distance to the pulsar is ≈0.6 kpc; an H II region around the O7V star HD 171198, located 0.42 kpc from the Sun, is responsible for the scattering of this pulsar’s radiation.

Astronomy Reports. 2017;61(5):417-427
pages 417-427 views

The character of pulse delays during radio bursts in the pulsar B0943+10

Suleymanova S., Pugachev V.

Аннотация

Results of a new series of observations of the anomalous pulsar B0943+10 carried out on the Large Scanning Antenna and DKR-1000 radio telescope of the Pushchino Radio Astronomy Observatory at 112 and 62 MHz, respectively, are presented. Several hundred pulse-arrival times (PATs) obtained on various days in 2013–2016 that correspond to the burst (B) mode emission are analyzed. A method for establishing the many-hour pulse shift in the emission window from 3.5-minute fragments is proposed. The delay of the mean pulse relative to the pre-calculated value follows an exponential law with a relaxation time of about 47 minutes. The pulse delay grows by 6 ms during the five hours following the onset of a burst. The random scatter of the residual PAT deviations is comparable to the amplitude of the systematic variations in these times over the lifetime of the B mode. These observations show that the character of the pulse delay as a function of time is the same at 112 and 62 MHz.

Astronomy Reports. 2017;61(5):428-439
pages 428-439 views

Physical parameters of the eclipsing binary V798 Cep

Volkov I., Chochol D., Kravtsova A.

Аннотация

The first high-accuracy CCD UBV RI(RI)C light curves for the recently discovered eclipsing binary V798 Cep (P = 16d.08, V = 11m. 8) are presented; this star is included in our program of eclipsing systems with considerable eccentricities. A photometric solution for the light curves and physical characteristics of the component stars are derived. The orbital eccentricity is quite high, e = 0.437. The longitude of periastron is close to 180°, making studies of the apsidal motion difficult. V798 Cep may be a hierarchical system.

Astronomy Reports. 2017;61(5):440-449
pages 440-449 views

Partial mixing in early-type main-sequence B stars

Staritsin E.

Аннотация

Partial mixing of material in the radiative envelopes and convective cores of rotating main sequence stars with masses of 8 and 16 M is considered as a function of the inital angular momentum of the stars. Losses of rotational kinetic energy to the generation of shear turbulence in the radiative envelope and the subsequent mixing of material in the envelope are taken into account. With an initial equatorial rotational velocity of 100 km/s, partial mixing develops in the upper part of the layer with variable chemical composition and the lower part of the chemically homogeneous radiative envelope. When the initial equatorial rotational velocity is 150–250 km/s, the joint action of shear turbulence and semi-convection leads to partial mixing in the radiative envelope and central parts of the star. The surface abundance of helium is enhanced, with this effect increasing with the angular momentum of the star. With an initial equatorial rotational velocity of 250 km/s, the ratio of the surface abundances of helium and hydrogen grows by ~30% and ~70% toward the end of the main-sequence evolution of an 8 M and 16 M star, respectively. The transformation of rotational kinetic energy into the energy of partial mixing increases with the angular momentum of the star, but does not exceed ~2%−3% in the cases considered.

Astronomy Reports. 2017;61(5):450-460
pages 450-460 views

Spots and activity of solar-type stars from Kepler observations

Savanov I., Dmitrienko E.

Аннотация

The spot coverages S for 2846 solar-type stars with effective temperatures from 5700 K to 5800 K and gravities from 4.4 to 4.5 have been measured. An analysis based on the MAST catalog, which presents photometric measurements obtained with the Kepler Space Telescope during Q9 is presented. The existence of two groups of solar-type stars, with S values between 0.001 and 0.007 and with S > 0.007, is inferred. The second group (active stars) contains 279 stars (about 10% of the total number of stars analyzed). The mean S parameter for the entire sample is 0.004, comparable to the mean spot coverage of the Sun. In general, the dependence of S on the rotation period for solar-type stars has characteristics similar to those found earlier for stars with exoplanets. For the vast majority of the stars in the sample, the activity is constant, and independent of age. The activity of the small number of active stars with S > 0.007 decreases with age. The age variations of the chromospheric activity index RHK are compared to variations of the spot coverage S. The relations analyzed have common characteristic features. It is likely that both the spot activity level and the chromospheric activity level abruptly decrease for stars older than 4 billion yrs.

Astronomy Reports. 2017;61(5):461-467
pages 461-467 views

Influence of Yukawa-type additions to a Newtonian gravitational potential on the perihelion precession of bodies in the solar system

Ursulov A., Chuvasheva T.

Аннотация

The results of theoretical studies of the influence of Yukawa-type additions to a Newtonian gravitational potential on the perihelion precession of bodies in the solar system are presented. An expression for the precession angle due to such additions is obtained. It is shown that, with certain relationships between the parameters in the Yukawa potential, their contribution to the perihelion precession of the trans-Neptunian objects 2000 OO67, 2006 SQ372, 2009 FW54, 2013 BL76, and 2003 VB12 is of order 0.01″ over the period, exceeding the contribution of general relativistic terms by at least an order of magnitude. The fundamental possibility of perihelion precession of these trans-Neptunian objects in the retrograde direction is established. Observational data on the precession of planets in the solar system are used to place constraints on the parameters of the added Yukawa potential.

Astronomy Reports. 2017;61(5):468-474
pages 468-474 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».