Microextraction of Aromatic Microbial Metabolites by Packed Sorbent (MEPS) from Model Solutions Followed by Gas Chromatography/Mass Spectrometry Analysis of Their Silyl Derivatives


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The paper describes the results of extraction of aromatic microbial metabolites (phenylcarboxylic acids) from model aqueous solutions using microextraction by packed sorbent (MEPS), followed by the determination of their silyl derivatives by gas chromatography/mass spectrometry. The selected conditions of adsorption–desorption, derivatization, and gas chromatography determination enable the detection of a number of compounds, which are proved and prospective disease markers. This detection could be performed at the level of their concentration in blood of healthy donors (0.5 μmol L–1) and patients of intensive care units, having an initial stage of sepsis (2–3 μmol L–1) or other serious diseases caused by significant microbial load and led to the development of multiple organ failure. The recoveries of phenylcarboxylic acids using nonpolar sorbent (C18) reached 20–65% for hydroxylated acids (phenyllactic, 4-hydroxybenzoic, 4-hydroxyphenylacetic, 4-hydroxyphenylpropanoic, homovanillic, and 4-hydroxyphenyllactic acids) and 100% for more nonpolar acids (benzoic, phenylpropanoic, and cinnamic acids).

Об авторах

P. Sobolev

Department of Chemistry

Email: alicepau@mail.ru
Россия, Moscow, 119991

A. Pautova

Department of Chemistry; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Автор, ответственный за переписку.
Email: alicepau@mail.ru
Россия, Moscow, 119991; Moscow, 107031

A. Revelsky

Department of Chemistry; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: alicepau@mail.ru
Россия, Moscow, 119991; Moscow, 107031

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).