A Polynomial-Time Approximation Algorithm for One Problem Simulating the Search in a Time Series for the Largest Subsequence of Similar Elements


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We analyze the mathematical aspects of the data analysis problem consisting in the search (selection) for a subset of similar elements in a group of objects. The problem arises, in particular, in connection with the analysis of data in the form of time series (discrete signals). One of the problems in modeling this challenge is considered, namely, the problem of searching in a finite sequence of points from the Euclidean space for the subsequence with the greatest number of terms such that the quadratic spread of the elements of this subsequence with respect to its unknown centroid does not exceed a given percentage of the quadratic spread of elements of the input sequence with respect to its centroid. It is shown that the problem is strongly NP-hard. A polynomial-time approximation algorithm is proposed. This algorithm either establishes that the problem has no solution or finds a 1/2-approximate solution if the length M* of the optimal subsequence is even, or it yields a \(\frac{1}{2}\left(\begin{array}{c}1-\frac{1}{M^*}\\ \end{array}\right)\)-approximate solution if M* is odd. The time complexity of the algorithm is O(N3(N2+q)), where N is the number of points in the input sequence and q is the space dimension. The results of numerical simulation that demonstrate the effectiveness of the algorithm are presented.

Об авторах

A. Kel’manov

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Автор, ответственный за переписку.
Email: kelm@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk; ul. Pirogova 2, Novosibirsk

S. Khamidullin

Sobolev Institute of Mathematics, Siberian Branch

Email: kelm@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk

V. Khandeev

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: kelm@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk; ul. Pirogova 2, Novosibirsk

A. Pyatkin

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: kelm@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk; ul. Pirogova 2, Novosibirsk

Yu. Shamardin

Sobolev Institute of Mathematics, Siberian Branch

Email: kelm@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk

V. Shenmaier

Sobolev Institute of Mathematics, Siberian Branch

Email: kelm@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».