Kernel-Distance-Based Intuitionistic Fuzzy c-Means Clustering Algorithm and Its Application


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Image segmentation plays an important role in machine vision, image recognition, and imaging applications. Based on the fuzzy c-means clustering algorithm, a kernel-distance-based intuitionistic fuzzy c-means clustering (KIFCM) algorithm is proposed. First, a fuzzy complement operator is used to generate the membership degree whereby the hesitation degree of intuitionistic fuzzy set is generated; second, a kernel-induced function is used to calculate the distance from each point to the cluster center instead of the Euclidean distance; third, a new objective function that includes the hesitation degree is established, and the optimization of the objective function results in new iterative expressions for the membership degree and the cluster center. The proposed KIFCM algorithm is compared with the fuzzy c-means clustering (FCM) algorithm, the kernel fuzzy c-means clustering (KFCM) algorithm, and the intuitionistic fuzzy c-means clustering (IFCM) algorithm in segmenting five images. The experimental results verify the effectiveness and superiority of our proposed KIFCM algorithm.

Sobre autores

Lei Xiangxiao

College of Electrical and Information Engineering, Hunan University; Changsha Social Work College

Email: 306400605@qq.com
República Popular da China, Hunan, Changsha, 410082; Hunan, Changsha, 410004

Ouyang Honglin

College of Electrical and Information Engineering, Hunan University

Email: 306400605@qq.com
República Popular da China, Hunan, Changsha, 410082

Xu Lijuan

Changsha Social Work College

Autor responsável pela correspondência
Email: 306400605@qq.com
República Popular da China, Hunan, Changsha, 410004

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019