Semi-supervised classification using multiple clusterings


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Graph determines the performance of graph-based semi-supervised classification. In this paper, we investigate how to construct a graph from multiple clusterings and propose a method called Semi-Supervised Classification using Multiple Clusterings (SSCMC in short). SSCMC firstly projects original samples into different random subspaces and performs clustering on the projected samples. Then, it constructs a graph by setting an edge between two samples if these two samples are clustered in the same cluster for each clustering. Next, it combines these graphs into a composite graph and incorporates the resulting composite graph with a graph-based semi-supervised classifier based on local and global consistency. Our experimental results on two publicly available facial images show that SSCMC not only achieves higher accuracy than other related methods, but also is robust to input parameters.

Sobre autores

G. Yu

College of Computer and Information Science

Email: kingjun@swu.edu.cn
República Popular da China, Chongqing, 400715

L. Feng

College of Computer and Information Science

Email: kingjun@swu.edu.cn
República Popular da China, Chongqing, 400715

G. Yao

College of Computer and Information Science

Email: kingjun@swu.edu.cn
República Popular da China, Chongqing, 400715

J. Wang

College of Computer and Information Science

Autor responsável pela correspondência
Email: kingjun@swu.edu.cn
República Popular da China, Chongqing, 400715

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016