Towards reliable object detection in noisy images


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Image noise is a common problem frequently caused by insufficient lighting, low-quality cameras, image compression and other factors. While low image quality is expected to degrade results of visual recognition, most of the current methods and benchmarks for object recognition, such as Pascal Visual Object Classes Challenge and Microsoft Common Objects in Context Challenge, focus on relatively high-quality images. Meanwhile, object recognition in noisy images is a common problem in surveillance and other domains. In this work we address object detection in noisy images and propose a novel low-cost method for image denoising. When combined with the standard Deformable Parts Model and Regions with Convolutional Neural Network object detectors, our method shows improvements of object detection under varying levels of image noise. We present a comprehensive experimental evaluation and compare our method to other denoising techniques as well as to standard detectors re-trained on noisy images. Results are presented for the common Pascal Visual Object Classes benchmark for object detection and KAIST Multispectral Pedestrian Detection Benchmark with the real noise presence in night images.

Негізгі сөздер

Авторлар туралы

S. Milyaev

VisionLabs LLC

Хат алмасуға жауапты Автор.
Email: milyaev@visionlabs.ru
Ресей, Moscow

I. Laptev

Institut national de recherche en informatique et en automatique

Email: milyaev@visionlabs.ru
Франция, Paris

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017