Mathematical immunology: processes, models and data assimilation

封面

如何引用文章

全文:

详细

The immune system is a complex multiscale multiphysical object. Understanding its functioning in the frame of systemic analysis implies the use of mathematical modelling, formulation of data consistency criterion, estimation of parameters, uncertainty analysis, and optimal model selection. In this work, we present some promising approaches to modelling the multi-physics immune processes, i.e., cell migration in lymph nodes (LN), lymph flow, homeostatic regulation of immune responses in chronic infections.

To describe the spatial-temporal dynamics of immune responses in lymph LN, we propose a model of lymphocyte migration, based on the second Newton’s law and considering three kinds of forces. The empirical distributions of three lymphocytes motility characteristics were used for model calibration using the Kolmogorov–Smirnov metric.

Prediction of lymph flow in a lymph node requires costly computations, due to diversity of sizes, forms, inner structure of LNs and boundary conditions. We proposed an approach to lymph flow modelling based on replacing the full-fledged computational physics-based model with an artificial neural network (ANN), trained on the set of pre-formed results computed using an initial mechanistic model. The ANN-based model reduces the computational time for some lymph flow characteristics by four orders of magnitude.

Calibration of Marchuk–Petrov model of antiviral immune response for SARS-CoV-2 infection was performed. To this end, we used previously published data on the viral load kinetics in nasopharynx of volunteers, and data on the observed ranges of interferon, antibodies and CTLs in the blood. The parameters, which have the most significant impact at different stages of infection process, were identified.

Inhibition of immune mechanisms, e.g., T cell exhaustion, is a distinctive feature of chronic viral infections and malignant diseases. We propose a mathematical model for the studies of regulation parameters of four exhausted T cell subsets in order to examine the balance of their proliferation and differentiation determined by interaction with SIRPa+ PD-L1+ and XCR+1 dendritic cells. The model parameters are evaluated, in order to study the reinvigoration effect of aPD-L1 therapy on the homeostasis of exhausted cells.

作者简介

Dmitry Grebennikov

G. Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; I. Sechenov First Moscow State Medical University

Email: dmitry.ew@gmail.com

Junior Research Associate, G. Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; Research Associate, I. Sechenov First Moscow State Medical University, Moscow, Russian Federation

俄罗斯联邦, Moscow; Moscow

Valeriya Zheltkova

G. Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; I. Sechenov First Moscow State Medical University

编辑信件的主要联系方式.
Email: zheltkova_v_v@staff.sechenov.ru

Junior Research Associate, G. Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; Junior Research Associate, I. Sechenov First Moscow State Medical University, Moscow, Russian Federation

俄罗斯联邦, Moscow; Moscow

Rostislav Savinkov

G. Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; I. Sechenov First Moscow State Medical University

Email: savinkov_r_s@staff.sechenov.ru

Junior Research Associate, G. Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; Junior Research Associate, I. Sechenov First Moscow State Medical University, Moscow, Russian Federation

俄罗斯联邦, Moscow; Moscow

Gennady Bocharov

G. Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; I. Sechenov First Moscow State Medical University

Email: gbocharov@gmail.com

PhD, MD (Phys.-Math.), Leading Research Associate, G. Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences; Professor, I. Sechenov First Moscow State Medical University, Moscow, Russian Federation

俄罗斯联邦, Moscow; Moscow

参考

  1. Теребиж В.Ю. Введение в статистическую теорию обратных задач. М.: Физматлит, 2005. 375 с. [Terebyzh V.Yu. Introduction to the statistical theory of inverse problems]. Moscow: Fizmatlit, 2005. 375 p.
  2. Beltra J.C., Manne S., Abdel-Hakeem M.S., Kurachi M., Giles J.R., Chen Z., Casella V., Ngiow S.F., Khan O., Huang Y.J., Yan P., Nzingha K., Xu W., Amaravadi R.K., Xu X., Karakousis G.C., Mitchell T.C., Schuchter L.M., Huang A.C., Wherry E.J. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity, 2020, Vol. 52, no. 5, pp. 825-841.e8.
  3. Bocharov G., Volpert V., Ludewig B., Meyerhans A. Mathematical immunology of virus infections. Cham, Switzerland: Springer International Publishing, 2018. 245 p.
  4. Grebennikov D., Bouchnita A., Volpert V., Bessonov N., Meyerhans A., Bocharov G. Spatial lymphocyte dynamics in lymph nodes predicts the cytotoxic T cell frequency needed for HIV infection control. Front. Immunol., 2019, Vol. 10, 1213. doi: 10.3389/fimmu.2019.01213.
  5. Grebennikov D., Karsonova A., Loguinova M., Casella V., Meyerhans A., Bocharov G. Predicting the kinetic coordination of immune response dynamics in SARS-CoV-2 infection: implications for disease pathogenesis. Mathematics, 2022, Vol. 10, no. 17, 3154. doi: 10.3390/math10173154.
  6. Grebennikov D., Zheltkova V., Bocharov, G. Application of minimum description length criterion to assess the complexity of models in mathematical immunology. Russian Journal of Numerical Analysis and Mathematical Modelling, 2022, Vol. 37, no. 5, pp 253-261.
  7. Tretiakova R., Setukha A., Savinkov R., Grebennikov D., Bocharov G. Mathematical modeling of lymph node drainage function by neural network. Mathematics, 2021, Vol. 9, no. 23, 3093. doi: 10.3390/math9233093.
  8. Zheltkova V., Argilaguet J., Peligero C., Bocharov G., Meyerhans A. Prediction of PD-L1 inhibition effects for HIV-infected individuals. PLoS Comput. Biol., 2019, Vol. 15, no. 11, e1007401. doi: 10.1371/journal.pcbi.1007401.

补充文件

附件文件
动作
1. JATS XML
2. Figure 1. Calibration of the model of immune cell motility in lymph node by the three characteristics of cell trajectories: translation speeds, turning angle speeds, meandering indices

下载 (199KB)
3. Figure 2. ANN-based model scheme and it's parameter identification procedure by minimization of the difference between network prediction XNN from initial mechanistic model solution XIE

下载 (399KB)
4. Figure 3. Application of mathematical modelling for estimation of immunotherapy effect on T cell homeostasis parameters

下载 (414KB)

版权所有 © Гребенников Д., Желткова В., Савинков Р., Бочаров Г., 2023

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».