Effect of pregnancy-specific β1-glycoprotein on the expression of arginase-1 and indolamine-2,3-dioxygenase by myeloid-derived suppressor cells

Cover Page

Cite item

Full Text

Abstract

Myeloid-derived suppressor cells (MDSC) - a population of immature cells of myeloid origin with inhibitory functions, mainly related to T lymphocytes. Normally, MDSC account for less than 1% of leukocytes in peripheral blood. The number of these cells increases during healthy pregnancy. However, MDSC have been shown to play a critical role in the maintenance of tumor growth and in autoimmune diseases.

Because MDSC are now considered important regulators of immunity, finding ways to manipulate their functions is important for the development of therapies for malignant and autoimmune diseases, as well as for pregnancy pathologies and post-transplant complications. The immunosuppressive mechanisms of these cells are mediated by their expression of the surface molecules CD73, ADAM17, PD -L1, the enzymes arginase 1 (Arg 1), inducible nitric oxide synthase (iNOS), and indoleamine 2,3-dioxygenase (IDO), reactive oxygen species, and the production of the anti-inflammatory cytokines IL -10 and TGF-β1.

Pregnancy-specific β1-glycoprotein (PSG) is a pregnancy glycoprotein that has immunomodulatory effects on natural (dendritic cells and macrophages) and adaptive (T cells) immunity cells. At the same time, the effect of PSG on MDSC has not been investigated so far. Since this glycoprotein has promising pharmacological applications, it is necessary to study not only the native variant of PSG but also its recombinant form.

Since the main function of MDSC is immunosuppression, the aim of our work was to evaluate one of its mechanisms, namely the intracellular expression of amino acid degradation enzymes Arg1 and IDO under the influence of native and recombinant PSG in vitro.

MDSC differentiation was performed from CD11b+ cells isolated from peripheral blood of healthy volunteers. Cells were cultured for 7 days with stepwise addition of GM-CSF, IL -1β, and LPS. Native (n) (1, 10, and 100 μg/mL) and recombinant (r) (1 and 10 μg/mL) PSG was added to the cultures three days before the end of incubation. The percentage of MDSCs (Lin- HLA-DR -CD11b+CD33+) intracellularly expressing Arg1 and IDO was determined by flow cytometry.

It was found that nPSG and rPSG did not alter the amount of Arg1-expressing MDSCs at all concentrations examined. However, at a concentration of 10 μg/mL, both types of proteins caused a statistically significant increase in the percentage of cells expressing IDO.

We have already established that nPSG and rPSG affect MDSC differentiation by increasing the proportion of these cells belonging to the monocytic subpopulation. However, now we can say that PSG, in addition, enhances the suppressive function of the studied cells.

The obtained data are novel and open perspectives for targeting myeloid suppressor cells to improve cellular technologies in science and medicine.

About the authors

Valeria P. Timganova

Institute of Ecology and Genetic of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: timganovavp@gmail.com
ORCID iD: 0000-0003-4581-1969

PhD (Biology), Research Associate, Laboratory of Cellular Immunology and Nanobiotechnology

Russian Federation, 13 Golev St., Perm 614081, Пермь

Kseniya Y. Shardina

Institute of Ecology and Genetic of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: shardinak@gmail.com

Research Engineer, Laboratory of Cellular Immunology and Nanobiotechnology

Russian Federation, 13 Golev St., Perm 614081, Пермь

Evgenia V. Gutina

Institute of Ecology and Genetic of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: gutinai05@gmail.com

Research Engineer, Laboratory of Cellular Immunology and Nanobiotechnology

Russian Federation, 13 Golev St., Perm 614081, Пермь

References

  1. Раев М.Б. Способ выделения и очистки трофобластического β1-гликопротеина. Патент РФ № 2367449. Опубликован 20.09.2009, Бюл. № 26. [Rayev M.B. Method for isolation and purification of trophoblastic β1-glycoprotein. RF Patent. 2009;2367449(Bull): 26.].
  2. Bian Z., Abdelaal A.M., Shi L., Liang H., Xiong L., Kidder K., Venkataramani M., Culpepper C., Zen K., Liu Y. Arginase-1 is neither constitutively expressed in nor required for myeloid-derived suppressor cell-mediated inhibition of T-cell proliferation. Eur. J. Immunol., 2018, Vol. 48, no. 6, pp. 1046-1058.
  3. Blois S.M., Sulkowski G., Tirado-Gonzalez I., Warren J., Freitag N., Klapp B.F., Rifkin D., Fuss I., Strober W., Dveksler G.S. Pregnancy-specific glycoprotein 1 (PSG1) activates TGF-beta and prevents dextran sodium sulfate (DSS)-induced colitis in mice. Mucosal Immunol., 2014, Vol. 7, pp. 3448-3458.
  4. Bozkus C.C., Elzey B.D., Crist S.A., Ellies L.G., Ratliff T.L. Expression of cationic amino acid transporter 2 is required for myeloid-derived suppressor cell-mediated control of T cell immunity. J. Immunol., 2015, Vol. 195, pp. 5237-5250.
  5. Fallarino F., Grohmann U., Vacca C., Bianchi R., Orabona C., Spreca A., Fioretti M.C., Puccetti P. T cell apoptosis by tryptophan catabolism. Cell Death Differ., 2002, Vol. 9, no. 10, pp. 1069-1077.
  6. Lin T.M., Halbert S.P., Spellacy W.N. Measurement of pregnancy associated plasma proteins during human gestation. J. Clin. Invest., 1974, Vol. 54, no. 3, pp. 576-582.
  7. Mbongue J.C., Nicholas D.A., Torrez T.W., Kim N.-S., Firek A.F., Langridge W.H.R. The role of indoleamine 2, 3-dioxygenase in immune suppression and autoimmunity. Vaccines, 2015, Vol. 3, no. 3, pp. 703-729.
  8. Munder M., Mollinedo F., Calafat J., Canchado J., Gil-Lamaignere C., Fuentes J.M., Luckner C., Doschko G., Soler G., Eichmann K., Müller F.M., Ho A.D., Goerner M., Modolell M. Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood, 2005, Vol. 105, no. 6, pp. 2549-2556.
  9. Pallotta M.T., Orabona C., Volpi C., Vacca C., Belladonna M.L., Bianchi R., Servillo G., Brunacci C., Calvitti M., Bicciato S., Mazza E.M., Boon L., Grassi F., Fioretti M.C., Fallarino F., Puccetti P., Grohmann U. Indoleamine 2, 3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat. Immunol., 2011, Vol. 12, no. 9, pp. 870-878.
  10. Timganova V.P., Bochkova M.S., Rayev M.B., Khramtsov P.V., Zamorina S.A. Immunoregulatory potential of pregnancy-specific β1-glycoprotein. Medical Immunology (Russia), 2021, Vol. 23, no. 3, pp. 455-468.
  11. Timganova V.P., Litvinova L.S., Yurova K.A., Khaziakhmatova O.G., Bochkova M.S., Khramtsov P.V., Raev M.B., Zamorina S.A. Effect of pregnancy specific β1-glycoprotein on the replicative potential of naïve T cells and immune memory T cells. Bull. Exp. Biol. Med., 2021, Vol. 172, no. 2, pp. 169-174.
  12. Veglia F., Sanseviero E., Gabrilovich D.I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol., 2021, Vol., no. 21, pp. 485-498.
  13. Yu J., Wang Y., Yan F., Zhang P., Li H., Zhao H., Yan C., Yan F., Ren X. Noncanonical NF-κB activation mediates STAT3-stimulated IDO upregulation in myeloid-derived suppressor cells in breast cancer. J. Immunol., 2014, Vol. 193, no. 5, pp. 2574-2586.
  14. Zamorina S.A., Timganova V.P., Bochkova M.S., Khramtsov P.V., Rayev M.B. Effect of pregnancy-specific β1-glycoprotein on indoleamine-2,3-dioxygenase activity in human monocytes. Dokl. Biol. Sci., 2016, Vol. 469, no. 1, pp. 206-208.
  15. Zea A.H., Rodriguez P.C., Culotta K.S., Hernandez C.P., DeSalvo J., Ochoa J.B., Park H.J., Zabaleta J., Ochoa A.C. L-Arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cell Immunol., 2004, Vol. 232, no. 1-2, pp. 21-31.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1

Download (97KB)
3. Figure 2

Download (99KB)

Copyright (c) 2023 Timganova V.P., Shardina K.Y., Gutina E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».