Влияние термической обработки на фазовую сегрегацию в полимер-содержащих композитных пленках CsPbBr2I

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В настоящей работе исследовано влияние температур вакуумирования и отжига на свойства композитных пленок на основе перовскитов CsPbBr2I, в которых использовали частичное замещение ионов Pb2+ на Mn2+, а также пассивацию границ зерен полиэтиленоксидом и поливинилденфторидом. В качестве растворителя был использован диметилсульфоксид. Для формирования пленок использовался метод центрифугирования. Температуры вакуумирования и отжига варьировали в диапазонах 60–80 и 60–90°C соответственно. В исследовании сравнивали спектральные зависимости фотолюминесценции, на основе которых сделаны заключения о влиянии фазовой сегрегации и применимости используемого температурного режима. Было установлено, что у образцов, полученных при использовании температур вакуумирования и отжига, равных 70°С, наблюдали пики фотолюминесценции на длинах волн 616 ± 14 и 638 ± 18 нм, соответствующие соединению CsPbBr2I. Наличие двух пиков свидетельствует о незначительной фазовой сегрегации, которая проявляется в локальном изменении стехиометрического состава образцов с формированием областей, обогащенных бромом и йодом. Тем не менее среди исследуемой выборки, с учетом ограничения фотоиндуцированной фазовой сегрегации, указанный режим термической обработки является оптимальным: понижение температуры приводит к смещению линии фотолюминесценции в область спектра с меньшей длиной волны, в то время как ее повышение ведет к образованию дефектных нелюминесцентных фаз.

Об авторах

А. С. Тойкка

Санкт-Петербургский академический университет им. Ж.И. Алферова РАН; Университет ИТМО

Email: astoikka.nano@gmail.com
Санкт-Петербург, 194021 Россия; Санкт-Петербург, 197101 Россия

Р. Кенесбай

Санкт-Петербургский академический университет им. Ж.И. Алферова РАН

Санкт-Петербург, 194021 Россия

М. Г. Баева

Санкт-Петербургский академический университет им. Ж.И. Алферова РАН

Санкт-Петербург, 194021 Россия

Д. М. Митин

Санкт-Петербургский академический университет им. Ж.И. Алферова РАН

Санкт-Петербург, 194021 Россия

И. С. Мухин

Санкт-Петербургский академический университет им. Ж.И. Алферова РАН

Санкт-Петербург, 194021 Россия

Список литературы

  1. Yao Z., Zhao W., Chen S., Jin Z., Liu, S. F. // ACS Appl. Energy Mater. 2020. V. 3. № 6. P. 5190. https://www.doi.org/10.1021/acsaem.9b02468
  2. Wang Q., Gong Z., Wu S., Pan S., Pan J. // J. Crystal Growth. 2022. № 596. P. 126838. https://www.doi.org/org/10.1016/j.jcrysgro.2022. 126838
  3. Zhang X., Yang P. // Langmuir. 2023. V. 39. № 32. P. 11188. https://www.doi.org/10.1021/acs.langmuir.3c01848
  4. Moon J., Mehta Y., Gundogdu K., So F., Gu Q. // Adv. Mater. 2023. P. 2211284. https://www.doi.org/10.1002/adma.202211284
  5. Baeva M., Gets D., Polushkin A., Vorobyov A., Goltaev A., Neplokh V., Mozharov A., Krasnikov D.V., Nasibulin A.G., Mukhin I., Makarov S. // Opto-Electronic Adv. 2023. V. 6. P. 220154. https://www.doi.org/10.29026/oea.2023.220154
  6. Hänsch P., Loi M.A. // Appl. Phys. Lett. 2023. V. 123. P. 030501. https://www.doi.org/10.1063/5.0151942
  7. Li H., Lin H., Ouyang D., Yao C., Li C., Sun J., Song Y., Wang Y., Yan Y., Wang Y., Dong Q., Choy W.C.H. // Adv. Mater. 2021. V. 33. P. 2008820. https://www.doi.org/10.1002/adma.202008820
  8. Shen X., Zhang X., Wang Z., Gao X., Wang Y., Lu P., Bai X., Hu J., Shi Z., Yu W.W., Zhang Y. // Adv. Functional Mater. 2022. V. 32. P. 2110048. https://www.doi.org/10.1002/adfm.202110048
  9. Yang J.N., Song Y., Yao J.S., Wang K.H., Wang J.J., Zhu B.S., Yao M.M., Rahman S.U., Lan Y.F., Fan F.J., Yao H. // J. Am. Chem. Soc. 2020. V. 142. № 6. P. 2956. https://www.doi.org/10.1021/jacs.9b11719
  10. Aygüler M.F., Puscher B.M.D., Tong Y., Bein T., Urban A.S., Costa R.D., Docampo P. // J. Phys. D: Appl. Phys. 2018. V. 51. № 33. P. 1. https://www.doi.org/10.1088/1361-6463/aad203
  11. Wang C.M., Su Y.M., Shih T.A., Chen G.Y., Chen Y.Z., Lu C.W., Yu I.S., Yang Z.P., Su H.C. // J. Mater. Chem. C. 2018. V. 6. № 47. P. 12808. https://www.doi.org/10.1039/c8tc04451a
  12. Stockman A., Macleod D.I.A., Johnson N.E. // J. Opt. Soc. Am. A. 1993. V. 10. № 12. P. 2491. https://www.doi.org/10.1364/josaa.10.002491
  13. Li J., Yang L., Guo Q., Du P., Wang L., Zhao X., Liu N., Yang X., Luo J., Tang J. // Sci. Bull. 2022. V. 67. № 2. P. 178. https://www.doi.org/10.1016/j.scib.2021.09.003
  14. Liang J., Liu Z., Qiu L., Hawash Z., Meng L., Wu Z., Jiang Y., Ono L.K., Qi Y. // Adv. Energy Mater. 2018. V. 8. P. 1800504. https://www.doi.org/10.1002/aenm.201800504
  15. Zheng L., Hurst T., Li Z. // Georgia J. Sci. 2022. V. 80. № 2. P. 1.
  16. Gets D., Alahbakhshi M., Mishra A., Haroldson R., Papadimitratos A., Ishteev A., Saranin D., Anoshkin S., Pushkarev A., Danilovskiy E., Makarov S., Slinker J.D., Zakhidov A.A. // Adv. Opt. Mater. 2021. V. 9. P. 2001715. https://www.doi.org/10.1002/adom.202001715
  17. Mondal S., Paul T., Maiti S., Das B.K., Chattopadhyay K.K. // Nano Energy. 2020. V. 74. P. 104870. https://www.doi.org/10.1016/j.nanoen.2020.104870
  18. Liu C., Cheng Y.B., Ge Z. // Chem. Soc. Rev. 2020. V. 49. № 6. P. 1653. https://www.doi.org/10.1039/c9cs00711c
  19. Zhang X., Gao X., Meng X. // J. Alloys Compd. 2019. V. 810. P. 151943. https://www.doi.org/10.1016/j.jallcom.2019.151943
  20. Gualdrón-Reyes A.F., Yoon S.J., Barea E.M., Agouram S., Muñoz-Sanjosé V., Meléndez Á.M., Niño-Gómez M.E., Mora-Seró I. // ACS Energy Lett. 2019. V. 4. № 1. P. 54. https://www.doi.org/10.1021/acsenergylett.8b02207
  21. OceanView (v. 1.6.7) (2020) Ocean Optics, США. https://www.oceanoptics.com/software/. Дата посещения 16.08.2024.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Институт физики твердого тела РАН, Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».