Влияние содержания меди на формирование фаз субоксидов кремния в пленках Cu–Si, полученных ионно-лучевым распылением

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Система Cu–Si важна для широкого спектра технологических применений. Настоящая работа посвящена исследованию влияния содержания меди на формирование фаз субоксидов кремния в пленках Cu–Si, полученных ионно-лучевым распылением. По данным рентгеновской дифракции и ультрамягкой рентгеновской эмиссионной спектроскопии в пленке с низким содержанием меди (~15 мас. %) кремний частично находится в аморфном состоянии, а частично окисляется, формируя субоксид SiO0.47. В пленках с высоким содержанием меди Cu (~65 мас. %) формируется фаза Cu3Si, которая приводит к возникновению фаз диоксида SiO2 и субоксида SiO0.8 как в приповерхностных, так и в более глубоких слоях. Результаты исследования с помощью рентгеновской фотоэлектронной спектроскопии указывают на формирование преимущественно кремний-кислородных тетраэдров типа Si–Si3O и SiO4 в образцах, содержащих ~15 мас. % Cu, и более богатых кислородом кремний-кислородных тетраэдров типа Si–Si2O2 в образцах с ~65 мас. % Cu, как на поверхности, так и в глубоких слоях пленок Cu–Si.

Об авторах

К. А. Барков

Воронежский государственный университет

Email: barkov@phys.vsu.ru
Воронеж, 394018 Россия

В. А. Терехов

Воронежский государственный университет

Воронеж, 394018 Россия

Е. С. Керсновский

Воронежский государственный университет

Воронеж, 394018 Россия

И. В. Польшин

Воронежский государственный университет

Воронеж, 394018 Россия

С. А. Ивков

Воронежский государственный университет

Воронеж, 394018 Россия

А. И. Чукавин

Воронежский государственный университет; Удмуртский федеральный исследовательский центр Уральского отделения Российской академии наук

Воронеж, 394018 Россия; Ижевск, 426067 Россия

С. В. Родивилов

Научно-исследовательский институт электронной техники (АО “НИИЭТ”)

Воронеж, 394033 Россия

Н. С. Буйлов

Воронежский государственный университет; Научно-исследовательский институт электронной техники (АО “НИИЭТ”)

Воронеж, 394018 Россия; Воронеж, 394033 Россия

Д. Н. Нестеров

Воронежский государственный университет

Воронеж, 394018 Россия

В. В. Побединский

Воронежский государственный университет; Научно-исследовательский институт электронной техники (АО “НИИЭТ”)

Воронеж, 394018 Россия; Воронеж, 394033 Россия

А. К. Пелагина

Воронежский государственный университет

Воронеж, 394018 Россия

К. М. Моисеев

Воронежский государственный университет; Московский государственный технический университет им. Н.Э. Баумана

Воронеж, 394018 Россия; Москва, 105005 Россия

А. Е. Никонов

Воронежский государственный технический университет

Воронеж, 394006 Россия

А. В. Ситников

Воронежский государственный технический университет

Воронеж, 394006 Россия

Список литературы

  1. Kammer C. Aluminum and aluminum alloys. // Springer Handbook of Materials Data. / Ed. Warlimont H., Martienssen W. Springer, 2018. P. 157. https://doi.org/10.1007/978-3-319-69743-7_6
  2. Parajuli O., Kumar N., Kipp D., Hahm J.I. // Appl. Phys. Lett. 2007. V. 90. P. 1. https://doi.org/10.1063/1.2730578
  3. Ahn H.J., Kim Y.S., Kim W.B., Sung Y.E., Seong T.Y. // J. Power Sources. 2006. V. 163 P. 211. https://doi.org/10.1016/j.jpowsour.2005.12.077
  4. Li H., Huang X., Chen L., Zhou G., Zhang Z., Yu D., Jun Mo Y., Pei N. // Solid State Ionics. 2000. V. 135. P. 181. https://doi.org/10.1016/S0167-2738(00)00362-3
  5. Su K., Luo J., Ji Y., Jiang X., Li J., Zhang J., Zhong Z., Su F.// J. Solid State Chem. 2021. V. 304. P. 122591. https://doi.org/10.1016/j.jssc.2021.122591
  6. Stolt L., Charai A., D’Heurle F.M., Fryer P.M., Harper J.M.E. // J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 1991. V. 9 P. 1501. https://doi.org/10.1116/1.577653
  7. Liu Y., Song S., Mao D., Ling H., Li M. // Microelectron. Eng. 2004. V. 75. P. 309. https://doi.org/10.1016/j.mee.2004.06.002
  8. An Z., Kamezawa C., Hirai M., Kusaka M., Iwami M. // J. Phys. Soc. Japan. 2002. V. 71. P. 2948. https://doi.org/10.1143/JPSJ.71.2948
  9. Wang J., Xu X., Ding C., Liu T., Dai Z., Qin H. // 2021 22nd Int. Conf. Electron. Packag. Technol. ICEPT. 2021. V. 1. P. 1. https://doi.org/10.1109/ICEPT52650.2021.9567953
  10. Somaiah N., Kanjilal A., Kumar P. // MRS Commun. 2020. V. 10. P. 164. https://doi.org/10.1557/mrc.2020.6
  11. Liu C.S., Chen L.J. // J. Appl. Phys. 1993. V. 74. P. 5501. https://doi.org/10.1063/1.354205
  12. Parditka B., Verezhak M., Balogh Z., Csik A., Langer G.A., Beke D.L., Ibrahim M., Schmitz G., Erdélyi Z. // Acta Mater. 2013. V. 61. P. 7173. https://doi.org/10.1016/j.actamat.2013.08.021
  13. Ibrahim M., Balogh-Michels Z., Stender P., Baither D., Schmitz G. // Acta Mater. 2016. V. 112. P. 315. https://doi.org/10.1016/j.actamat.2016.04.041
  14. Guillet S., Regalado L.E., Lopez-Rios T., Cinti R. // Appl. Surf. Sci. 1993. V. 65/66. P. 742. https://doi.org/10.1016/0169-4332(93)90748-Z
  15. Sufryd K., Ponweiser N., Riani P., Richter K.W., Cacciamani G. // Intermetallics. 2011. V. 19. P. 1479. https://doi.org/10.1016/j.intermet.2011.05.017
  16. Hallstedt B., Gröbner J., Hampl M., Schmid-Fetzer R. // Calphad Comput. Coupling Phase Diagrams Thermochem. 2016. V. 53. P. 25. https://doi.org/10.1016/j.calphad.2016.03.002
  17. Mattern N., Seyrich R., Wilde L., Baehtz C., Knapp M., Acker J. // J. Alloys Compd. 2007. V. 429. P. 211. https://doi.org/10.1016/j.jallcom.2006.04.046
  18. Chromik R.R., Neils W.K., Cotts E.J. // J. Appl. Phys. 1999. V. 86. P. 4273. https://doi.org/10.1063/1.371357
  19. Polat D.B., Eryilmaz L., Keleş Ö. // ECS Meet. Abstr. MA. 2014. P. 433. https://doi.org/10.1149/ma2014-02/5/433
  20. Polat B.D., Eryilmaz O.L., Keleş O., Erdemir A., Amine K., // Thin Solid Films. 2015. V. 596. P. 190. https://doi.org/10.1016/j.tsf.2015.09.085
  21. Sarkar D.K., Dhara S., Nair K.G.M., Chaudhury S.// Nucl. Instrum. Methods Phys. Res. B. 2000. V. 161. P. 992. https://doi.org/10.1016/S0168-583X(99)00774-0
  22. Gumarov A.I., Rogov A.M., Stepanov A.L. // Compos. Commun. 2020. V. 21 P. 8. https://doi.org/10.1016/j.coco.2020.100415
  23. Pászti Z., Petö G., Horváth Z.E., Karacs A., Guczi L. // J. Phys. Chem. B. 1997. V. 101. P. 2109. https://doi.org/10.1021/jp961490d
  24. Benouattas N., Mosser A., Raiser D., Faerber J., Bouabellou A. // Appl. Surf. Sci. 2000. V. 153. P. 79. https://doi.org/10.1016/S0169-4332(99)00366-9
  25. Benouattas N., Mosser A., Bouabellou A. // Appl. Surf. Sci. 2006. V. 252. P. 7572. https://doi.org/10.1016/j.apsusc.2005.09.010
  26. Saad A.M., Fedotov A.K., Fedotova J.A., Svito L.A., Andrievsky B.V., Kalinin Y.E., Fedotova V. V., Malyutina-Bronskaya V., Patryn A.A., Mazanik A.V., Sitnikov A.V. // Phys. Status Solidi C Conf. 2006. V. 3. P. 1283. https://doi.org/10.1002/pssc.200563111
  27. Svito I., Fedotov A.K.F., Koltunowicz T.N., Zukowski P., Kalinin Y., Sitnikov A., Czarnacka K., Saad A. // J. Alloys Compd. 2015. V. 615. P. S371. https://doi.org/10.1016/j.jallcom.2014.01.136
  28. Domashevskaya E.P., Mahdy M.A., Ivkov S.A., Sitnikov A.V., Mahdy I.A. // Mater. Chem. Phys. 2022. V. 277. P. 125480. https://doi.org/10.1016/j.matchemphys.2021.125480
  29. Terekhov V.A., Domashevskaya E.P., Kurganskii S.I., Nesterov D.N., Barkov K.A., Radina V.R., Velichko K.E., Zanin I.E., Sitnikov A.V., Agapov B.L. // Thin Solid Films. 2023. P. 772. P. 139816. https://doi.org/10.1016/j.tsf.2023.139816
  30. Ситников А.В. // Альтернативная энергетика и экология. 2003. № S2. P. 114.
  31. Agarwal B.K. X-Ray Spectroscopy. // Springer Series in Optical Sciences. / Springer Berlin, Heidelberg, 1991. P. 421. https://doi.org/10.1007/978-3-662-14469-5
  32. Зимкина Т.М., Фомичев В.А. Ультрамягкая рентгеновская спектроскопия. / Ред. Порай-Кошиц Е.А. Изд-во Ленинградского университета, 1971. С. 132.
  33. Terekhov V.A., Kashkarov V.M., Manukovskii E.Yu., Schukarev A.V., Domashevskaya E.P. // J. Electron Spectros. Relat. Phenomena. 2001. V. 114–116. P. 895. https://doi.org/10.1016/S0368-2048(00)00393-5
  34. Zimmermann P., Peredkov S., Abdala P.M., De Beer S., Tromp M., Müller C., van Bokhoven J.A. // Coord. Chem. Rev. 2020. V. 423. P. 213466. https://doi.org/10.1016/j.ccr.2020.213466
  35. Baker A.D., Brundle C.R. Electron Spectroscopy: Theory, Experiments and Applications. Academic Press, 1978. P. 361.
  36. Hufner S. Photoelctron Spectroscopy: Principles and Applications. // Springer Series in Solid-State Sciences. V. 82. / Ed. Lotsch K.V. Springer Science & Business Media, 2013. P. 515. https://doi.org/10.1007/978-3-662-03150-6
  37. Himpsel F.J., McFeely F.R., Taleb-Ibrahimi A., Yarmoff J.A., Hollinger G. // Phys. Rev. B. 1988. V. 38. P. 6084. https://doi.org/10.1103/PhysRevB.38.6084
  38. Joint Committee on Powder Diffraction Standards (JCPDS) (2024) International Centre for Diffraction Data, USA. https://www.icdd.com/
  39. Solberg J.K. // Acta Crystallogr. Sect. A. 1978. V. 34. P. 684–698. https://doi.org/10.1107/S0567739478001448.
  40. Wiech G., Feldhütter H.O., Šimůnek A. // Phys. Rev. B. 1993. V. 47. P. 6981. https://doi.org/10.1103/PhysRevB.47.6981.
  41. Moulder J.F. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data / Ed. Chastain J. Physical Electronics Division, Perkin-Elmer Corporation, 1992. P. 261.
  42. Fang D., He F., Xie J., Xue L. // J. Wuhan Univ. Technol. Mater. Sci. Ed. 2020. V. 35. P. 711. https://doi.org/10.1007/s11595-020-2312-7.
  43. Banholzer W.F., Burrell M.C. // Surf. Sci. 1986. V. 176. P. 125. https://doi.org/10.1016/0039-6028(86)90167-6.
  44. Hollinger G., Himpsel F.J. // J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 1983. V. 1 P. 640. https://doi.org/10.1116/1.572199.
  45. Huang H.Y., Chen L.J. // Appl. Phys. Lett. 2000. V. 88. P. 1412. https://doi.org/10.1063/1.373832

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Институт физики твердого тела РАН, Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».