Regularities of Crystallographic Texture Formation in Austenitic Steel during Rolling and Tensile Testing
- Autores: Krymskaya O.A1, Isaenkova M.G1, Osintsev A.V1, Fesenko V.A1, Tyutin V.P1, Bednyakov D.A1
-
Afiliações:
- National Research Nuclear University “MEPhI”
- Edição: Nº 5 (2025)
- Páginas: 73-85
- Seção: Articles
- URL: https://bakhtiniada.ru/1028-0960/article/view/356814
- DOI: https://doi.org/10.31857/S1028096025050091
- ID: 356814
Citar
Resumo
AISI304 steel samples cut from a forged rod were rolled at room temperature using longitudinal and cross schemes, after which they were subjected to various heat treatments with cooling from temperatures of the two-phase α+γ- and single-phase γ-regions to fix different phase compositions. The phase composition was studied, the volume fractions of austenite and α-martensite, crystallographic texture, structure and substructure of two-phase steel were determined, uniaxial tension tests of rolled sheets in different directions were carried out to evaluate the anisotropy of mechanical properties. It was found that the occurrence of γ → α phase transformations during deformation significantly depended on the rolling scheme and conditions, and the amount of remaining austenite varied within 15–29%. The reverse α → γ phase transformation initiated by annealing in the single-phase γ-region leads in the case of longitudinal rolling to the multiplication of the γ-phase texture components and the appearance of an additional orientation {113}<332>, while in the cross scheme the texture of deformed austenite is preserved. Quenching in the two-phase region at 700°C does not lead to a fundamental change in the austenite texture, but ensures the appearance of additional martensite components {110}<001> and {112}<111>. The texture features affect the anisotropy of elastic properties and yield strengths: the anisotropy of the Young's modulus of samples consisting entirely of austenite is higher (E_TD/E_RD = 1.67) compared to 1.25 for samples of quenched two-phase steel.
Sobre autores
O. Krymskaya
National Research Nuclear University “MEPhI”
Autor responsável pela correspondência
Email: OAKrymskaya@mephi.ru
Moscow, Russia
M. Isaenkova
National Research Nuclear University “MEPhI”
Email: MGIsaenkova@mephi.ru
Moscow, Russia
A. Osintsev
National Research Nuclear University “MEPhI”
Email: OAKrymskaya@mephi.ru
Moscow, Russia
V. Fesenko
National Research Nuclear University “MEPhI”
Email: OAKrymskaya@mephi.ru
Moscow, Russia
V. Tyutin
National Research Nuclear University “MEPhI”
Email: OAKrymskaya@mephi.ru
Moscow, Russia
D. Bednyakov
National Research Nuclear University “MEPhI”
Email: OAKrymskaya@mephi.ru
Moscow, Russia
Bibliografia
- Guo X., La P., Li H., Wei Y., Lu X. // Steel Res. Int. 2020. V. 91. Iss. 6. P. 1900585. https://doi.org/10.1002/srin.201900585
- Sun G., Du L., Hu J., Zhang B., Misra R. D. K. // Mater. Sci. Eng. A. 2019. V. 746. P. 341. https://doi.org/10.1016/j.msea.2019.01.020
- Talonen J., Hänninen H. // Acta Mater. 2007. V. 55. P. 6108. https://doi.org/10.1016/j.actamat.2007.07.015
- Yardley VA., Payton E.J. // Mater. Sci. Technol. 2014. V. 30. P. 1125. https://doi.org/10.1179/1743284714Y.0000000572
- Shen Y.F., Li X.X., Sun X., Wang Y.D., Zuo L. // Mater. Sci. Eng. A. 2012. V. 552. P. 514. https://doi.org/10.1016/j.msea.2012.05.080
- Haghdadi N., Cizek P., Hodgson P. D., He Y., Sun B., Jonas J. J., Rohrer G. S., Beladi H. // J. Mater. Sci. 2020. V. 55. № 6. P. 5322. https://doi.org/10.1007/s10853-020-04358-3
- Mumtaz K., Takahashi S., Echigoya J., Zhang L., Kamada Y., Sato M. // J. Mater. Sci. Lett. 2003. V. 22. P. 423. https://doi.org/10.1023/A:1022999309138
- Tabin J., Nalepka K., Kawakko J., Brodecki A., Bata P., Kowalewski Z. // Metall. Mater. Trans. A. 2023. V. 54. P. 4606. https://doi.org/10.1007/s11661-023-07223-5
- Naghizadeh M., Mirzadeh H. // Met. Mat. Trans. A. 2016. V. 47. P. 4210. https://doi.org/10.1007/s11661-016-3589-1
- Isaenkova M., Perlovich Yu. A., Fesenko V., Dobrokhotov P., Tselishchev A. // IOP Conf. Ser.: Mater. Sci. Eng. 2016. V. 130. P. 012007. https://doi.org/10.1088/1757-899X/130/1/012007
- Tavares S.S.M., Gunderov D., Stolyarov V., Neto J.M. // Mater. Sci. Eng. 2003. V. 358. P. 32. https://doi.org/10.1016/S0921-5093(03)00263-6
- Zhang L., Wu Z. // J. Mater.: Design Appl. 2024. V. 238. Iss. 3. P. 397. https://doi.org/10.1177/14644207231190491
- Amininejad A., Jamaati R., Hosseinipour S.J. // Mater. Sci. Eng. A. 2019. V. 767. P. 138433. https://doi.org/10.1016/j.msea.2019.138433
- Zheng C., Liu C., Ren M., Jiang H., Li L. // Mater. Sci. Eng. A. 2018. V. 724. P. 260. https://doi.org/10.1016/j.msea.2018.03.105
- Ma B., L C., Wang J., Cai B., Sui F. // Mater. Sci. Eng. A. 2016. V. 671. P. 190. https://doi.org/10.1016/j.msea.2016.06.047
- Krymskaya O.A., Isaenkova M.G., Fesenko V.A., Minushkin R.A. // CIS Iron Steel Rev. 2022. V. 24. P. 29. https://doi.org/10.17580/cisisr.2022.02.05
- Перлович Ю.А., Исаенкова М.Г. Структурная неоднородность текстурованных металлических материалов. М.: НИЯУ МИФИ, 2015. 396 с.
- Benatti E.A., De Vincentis N.S., Al-Hamdany N., Schell N., Brokmeter H.-G., Avatos M., Bolmaro R.E. // J. Synchrotron Radiat. 2022. V. 29. P. 732. https://doi.org/10.1107/S160057752200220X
- Isaenkova M.G., Krymskaya O.A., Klyukova K.E., Bogomolova A.V., Dzhunneev P.S., Kozlov I.V., Fesenko V.A. // Lett. Mater. 2023. V. 13. № 4. P. 341. https://doi.org/10.22226/2410-3535-2023-4-341-346
- Isaenkova M.G., Krymskaya O.A. // Tsvetnye Metally. 2022. V. 10. P. 13. https://doi.org/10.17580/tsm.2022.10.02
- ГОСТ 5632-2014 Нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. М.: Стандартинформ, 2015. 54 с.
- Properties of Stainless Steel Welds // Weld Integrity and Performance / Ed. Lamppman S.R. Ch. 14. ASM International, 1997. P. 249. https://doi.org/10.31399/asm.tb.wip.165930249
- Horiuchi T., Reed R.P. Austenitic Steels at Low Temperatures / Ed. Horiuchi T., Reed R.P. New York: Plenum Press, 1983. 388 p.
- Перлович Ю.А., Исаенкова М.Г., Крымская О. А., Бабич Я. А., Фесенко В. А. // Заводская лаборатория. Диагностика материалов. 2020. Т. 86. № 5. С. 22. https://doi.org/10.26896/1028-6861-2020-86-5-22-30
- Isaenkova M., Perlovich V., Fesenko V. // IOP Conf. Ser.: Mater. Sci. Eng. 2016. V. 130. P. 012055. https://doi.org/10.1088/1757-899X/130/1/012055
- Hielscher R., Schaeben H. // J. Appl. Crystallogr. 2008. V. 41. P. 1024. https://doi.org/10.1107/S0021889808030112
- MTEX Toolbox — Open Software for Analyzing and Modeling Crystallographic Textures by Means of EBSD or Pole Figure Data. TU Chemnitz, Germany. https://mtex-toolbox.github.io (accessed 14 Nov 2024, режим доступа: свободный).
- Bunge H.J. Texture Analysis in Materials Science. London: Butterworth, 1982. 593 p.
- ГОСТ 1497-84 Методы испытаний на растяжение. М.: Стандартинформ, 1984. 49 с.
- Sutton M.A., Orieu J.-J., Schreier H. Image Correlation for Shape, Motion and Deformation Measurements. Columbia: Springer, 2009. 364 p.
Arquivos suplementares

