Modeling of Thermal Fields and Thermomechanical Deformation of the Ion Source Electrodes. Development of Refined Mathematical Model of Electrode Deformation
- Authors: Mogulkin A.I1, Svotina V.V1, Melnikov A.V1, Peysakhovich O.D1, Demchenko D.S1, Abgaryan V.K1, Khartov S.A1
-
Affiliations:
- Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (RIAME MAI)
- Issue: No 5 (2025)
- Pages: 124-142
- Section: Articles
- URL: https://bakhtiniada.ru/1028-0960/article/view/356820
- DOI: https://doi.org/10.7868/S3034573125050159
- ID: 356820
Cite item
Abstract
Besides the standard application of ion thrusters for the Near-Earth space exploration and cruise missions, there is a problem of removing man-made space debris objects from the Near-Earth space by a weakly diverging ion beam, i.e. by a contactless impact. However, for stable operation of the ion-extraction system of both the ion thruster and the ion source, it is necessary to predict and take into account the thermal deformations of electrodes of the ion-extraction system. The increase in the number of man-made space debris objects in the Near-Earth space hinders the long-term sustainable development of space activities. Many different methods have been proposed for removing large objects into disposal orbits or into low orbits for their further destruction in the dense layers of the Earth's atmosphere. To remove space debris, a service spacecraft can be used, which could approach the space debris to be removed and tow it to the disposal region by a contactless impact. A radio-frequency ion source forming a weakly diverging ion beam, under the influence of which the space debris objects would move in the direction of the disposal orbit, can be used as an onboard device designed for this purpose. Such radio-frequency ion source is in fact a radio-frequency ion thruster. The development of thermal and thermomechanical models of ion thruster and ion source taking into account the requirements for the reliable operation and integration of ion source with service spacecraft systems to provide contactless space debris transportation in space and integrations of ion thruster with onboard systems to provide attitude control or ensure cruise missions is one of the problematic scientific and technical issues. In terms of design, the ion-extraction system of ion thruster and ion source is the most complex unit. When developing the ion-extraction system design, it is necessary to take into account the peculiarities of electrode operation.
Keywords
About the authors
A. I Mogulkin
Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (RIAME MAI)
Author for correspondence.
Email: revenged@yandex.ru
Moscow, Russia
V. V Svotina
Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (RIAME MAI)
Email: revenged@yandex.ru
Moscow, Russia
A. V Melnikov
Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (RIAME MAI)
Email: revenged@yandex.ru
Moscow, Russia
O. D Peysakhovich
Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (RIAME MAI)
Email: revenged@yandex.ru
Moscow, Russia
D. S Demchenko
Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (RIAME MAI)
Email: revenged@yandex.ru
Moscow, Russia
V. K Abgaryan
Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (RIAME MAI)
Email: revenged@yandex.ru
Moscow, Russia
S. A Khartov
Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (RIAME MAI)
Email: revenged@yandex.ru
Moscow, Russia
References
- Kravchenko D., Lovtsov A.S., Madeev S. // AIP Conf. Proc. 2019. V. 2179. P. 020012/ https://doi.org/10.1063/1.5135485
- Takao Y., Iwata I., Chyou N. Development of Small Scale Microwave Discharge Ion Thruster of 3–5 cm Size. // 2012 IEEE Vehicle Power and Propulsion Conference, 9–12 October, 2012, Seoul, Korea. https://doi.org/10.1109/VPPC.2012.6422749
- Feili D., Lotz B., Loeb H.E., Leiter H.J., Boss M., Braeg R., Di Cara D. Radio Frequency Mini Ion Engine for Fine Attitude Control and Formation Flying Applications. // 2 CEAS European Air & Space Conference, 26–29 October, 2009, Manchester, UK.
- Tighe W.G., Chien K.-R., Spears R. XIPS Ion Thrusters for Small Satellite Applications. // SSC07-III–11, 21 Annual AIAA/USU Conference on Small Satellites, 13–16 August, 2007, Logan, UT, USA.
- Gafarov A.A., Drondin A.V., Zakharenkov L., Kliimenko A.G., Kravchenko D.A., Kudinov A.S., Lovisov A.S., Lukoyanov Y.M., Ogloblina I.S., Semenkin A.V., Sobolev V.V., Solodukhin A.E., Yanchur S.V., Shagayda A. // AIP Conf. Proc. 2021. V. 2318. P. 040001. https://doi.org/10.1063/5.0035980
- Andrews S., Berthoud L. // Acta Astronautica. 2020. V. 170. P. 386. https://doi.org/10.1016/j.actaastro.2019.12.034
- Lasson O., Hedengen G. Electrostatic Ion Thrusters for Space Debris Removal: Degree Project in Technology. Stockholm, Sweden, 2018. http://www.diva-portal.org/smash/get/diva2:1219151/FULLTEXT01.pdf (available: 11.02.2023)
- Obukhov V.A., Kirillov V.A., Petukhov V.G., Popov G.A., Svoitna V.V., Testoyedov N.A., Usovik I.V. // Acta Astronautica. 2021. V. 181. P. 569. https://doi.org/10.1016/j.actaastro.2021.01.043
- Poole M., Ho M. Boeing Low-Thrust Geosynchronous Transfer Mission Experience. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080012681.pdf (available: 20.09.2022)
- Koroteev A.S., Lovisov A.S., Muravlev V.A., Selivanov M.Y., Shagayda A. // Europ. Phys. J. D. 2017. V. 71. P. 120. https://doi.org/10.1140/epjd/e2017-70644-6
- Lovisov A.S., Selivanov, M.Y., Kostin A.N. // Acta Astronautica. 2020. V. 169. P. 150. https://doi.org/10.1016/j.actaastro.2019.12.009
- Bramanti C., Izzo D., Samaraee T., Ealker R., Fearn D. // Acta Astronautica. 2009. V. 64. Iss. 7–8. P. 735. https://doi.org/10.1016/j.actaastro.2008.11.013
- NASA’s Evolutionary Xenon Thruster: The Next Ion Propulsion System for Solar System Exploration. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090004684.pdf (available: 20.09.2022)
- Dobkevicius M. Modelling and Design of Inductively Coupled Radio Frequency Gridded Ion Thruster with an Application to Ion Beam Shepherd Type Space Missions: Thesis for the degree of Doctor of Philosophy: University of Southampton, Southampton, England. 2017.
- Loeb H., Feili D., Popov G.A., Obulhov V.A., Balashov V.V., Mogulkin A.I., Murashko V.M., Nesterenko A.N., Khartov S. Design of High-Power High-Specific Impulse RF-Ion Thruster. // 32 International Electric Propulsion Conference, Wiesbaden, Germany, 11–15 September, 2011, 8 p., IEPC-2011-290.
- Loeb H.W., Schartner K.H., Dachwald B., Ohndorf A. Perspectives of Electric Propulsion for Outer Planetary and Deep Space Missions. // European Planetary Science Congress, 13–18 September, 2009, Potsdam, Germany, EPSC2009-416-1.
- Dachward B., Seboldt W., Loeb H.W., Schartner K.H. // Acta Astronautica. 2008. V. 63. Iss. 1–4. P. 91. https://doi.org/10.1016/j.actaastro.2007.12.023
- Dachward B., Ohndorf A., Spurmann J., Loeb H.W., Schartner K.-H., Seboldt W. Mission Design for a SEP Mission to Saturn. // 60 International Astronautical Congress, Daejeon, Korea, 12–16 October, 2009. IAC-09.C4.8.7.
- Shagayda A., Lovisov A.S., Muravlev V.A., Selivanov M. Ion Thruster Development for a Transport and Power Generation Module Project. Joint Conference of 30 International Symposium on Space Technology and Science. // 34 International Electric Propulsion Conference and 6 Nano-Satellite Symposium, Hyogo-Kobe, Japan, 4–10 July, 2015.
- Loeb H.W., Petukhov V.G., Popov G.A., Mogulkin A.I. // Acta Astronautica. 2015. V. 116. P. 299. https://doi.org/10.1016/j.actaastro.2015.07.019
- Konstantinov M.S., Loeb H.W., Petukhov V.G., Popov G.A. // Int. J. Space Technol. Management Innovation. 2017. V. 1. Iss. 2. P. 17. https://doi.org/10.4018/jistmi.2011070101
- Goebel D.M., Katz J. Fundamentals of Electric Propulsion: Ion and Hall Thrusters. John Wiley & Sons Inc, 2008. 486 p.
- High Purity Factory Price Medical Xenon Gas. https://taiyugas.en.made-in-china.com/product/ZOITduycifoG/China-High-Purity-Factory-Price-Medical-Xenon-Gas.html (available: 11.02.2023)
- Best Price for High Purity 99.999% 5n Xe Gas Xenon Filled in ISO/DOT Gas Cylinder. https://guidagas.en.made-in-china.com/product/IsaEFjihdcZWw/China-Best-Price-for-High-Purity-99-999-5n-Xe-Gas-Xenon-Gas-Filled-in-ISO-DOT-Gas-Cylinder.html (available: 11.02.2023)
- Loeb H. // Astronautica Acta. 1962. V. 8. № 1. P. 49.
- Schmidt G.R., Patterson M.J., Benson S.W. NASA’s Evolutionary Xenon Thruster: NASA’s Next Step in Electric Propulsion. // 5th International Spacecraft Propulsion Conference. 2008. P. 100.
- Loeb H.W. // J. Spacecraft Rockets. 1971. V. 8. Iss. 5. P. 494. https://doi.org/10.2514/3.59683
- Freisinger J., Reineck S., Loeb H.W. // IEE Conf. Publication. 1978. V. 165. P. 243.
- Bassner H., Loeb H. // Earth-Oriented Applications of Space Technology. 1984. V. 4. Iss. 3. P. 125.
- Groh K.H., Fahrenbach P., Keiling N., Loeb H.W. Electric Propulsion Activities at Giessen University. // AIAA-92-3145, 28 AIAA/ASME/ASEE Joint Propulsion Conference and Exhibit, 6–8 July, 1992, Nashville, Tennessee, USA.
- Loeb H.W., Schartner K.-H., Meyer B.K., Feili D., Weis S., Kimse D. Forty Years of Giessen EP-Activities and the Recent RIT-Microthruster Development. // 29 International Electric Propulsion Conference. 31 October–4 November, 2005. Princeton University, New Jersey, USA, IEPC-2005-031.
- Ridby V.A., Masherov P.E., Obukhov V.A., Savinov V.P. // High Voltage Engineering. 2013. V. 39. Iss. 9. P. 2077. https://doi.org/10.3969/j.issn.1003-6520.2013.09.002
- Abgaryan V.K., Akhmetzhanov R.V., Loeb H.W., Obukhov V.A., Cherkasova M.V. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2013. V. 7. Iss. 6. P. 1092. https://doi.org/10.1134/S1027451013060037
- Mogulkin A.I., Obukhov V.A., Fedorov V.A. Investigation of Temperature Deformation of the IES Electrodes Based on the Continuum Themo-Mechanical Calculation Model. // Proceedings of the 5 Russian-German Conference on Electric Propulsion and Their Application “Electric Propulsion — New Challenges”, Dresden, Germany, 2014.
- Fedorov V.A., Obukhov V.A., Mogulkin A.I. Issledovanie temperaturnogo deformirovaniya elektrodov IOS na osnove kontinual’noj termomekhanieheskoj raschetnoji modeli. // 13 Mezhdunarodnaya konferenciya «Aviatsiya i kosmonavitka», Moscow, RF, 17–21 November, 2014 (In Rus.).
- Birger I.A. Kruglye plastinki i obolochki vrashcheniya. M.: Oborongiz, 1961. 368 s. (In Rus.).
- Bezuhov N.N., Bazhanov V.L., Gol’denblat I.I., Nikolaenko N.A., Sinyukov A.M. Raschety na prochnost’, ustojchivost’ i kolebaniya v usloviyah vysokih temperature. / Ed. Gol’denblat I.I. M.: Mashinostroenie, 1965. 567 s. (In Rus.).
- Volmir A.S. Gibkie plastinki i obolochki. M.: Gostekhizdat, 1956. 419 p. (In Rus.).
- Fedorov V.A., Obukhov V.A., Mogulkin A.I. Simulation of Temperature Deformation of Ion Thruster Electrodes. // International 34th Electric Propulsion Conference, 2015. — IEPC-2015-444p/ISTS-2015-b-444p. — 9 p.
- Fedorov V.A. Termoustojchivost’ uprugo zashchenniennyh kol’cevyh plastin peremennoj zhestkosti. // Izvestiya VUZov. Aviatsionnaya teknika, 1976. № 4. P. 127. (In Rus.).
Supplementary files


