Changes in the Structure and Properties of Fluorocarbon Coatings under Irradiation with Accelerated C60 Ions
- Authors: Pukha V.E1,2, Nechaev G.V1, Kabachkov E.N1,3, Lukina I.N4, Drozdova E.I4, Chernogorova O.P4
-
Affiliations:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
- Hydrogen Energy Center Ltd.
- Osipyan Institute of Solid State Physics RAS
- Baikov Institute of Metallurgy and Materials Science RAS
- Issue: No 5 (2025)
- Pages: 37-46
- Section: Articles
- URL: https://bakhtiniada.ru/1028-0960/article/view/356810
- DOI: https://doi.org/10.7868/S3034573125050055
- ID: 356810
Cite item
Abstract
The first results of combined deposition of coatings from a beam of accelerated C60 fullerene ions and fluoroplastic vapor (polymetrized tetrafluoroethylene, PTFE) are presented. The coatings were formed by condensation of thermally evaporated PTFE on a Si substrate in vacuum under irradiation with a C60 ion beam with an energy of 5 keV, passed through a mass spectrometer. The calculated ratio of C60 ions and molecular fragments condensing on the substrate (–CF2–CF2–) was chosen close to 1:1. The structure and chemical bonds have been studied by Raman scattering and X-ray photoelectron spectroscopy, according to which the coating contains about 8.6 at. % fluorine. The coating contains ~35% sp3 bonds, with a sp3/sp2 ratio of ~0.76, and the main part (up to 50%) of fluorine–carbon bonds is concentrated in the form of polymer chains –CF2–CF2–, which are located in a solid carbon matrix, that is, the coating structure is nanocomposite. Mechanical tests showed high hardness of the coating H~32 GPa with an H/E ratio of ~0.16 (E is Young's modulus). The coating is characterized by a high contact angle of wetting with distilled water (CA = 98°). Tribological tests showed a coefficient of friction close to 0.18, with low wear of less than 10–7 mm3/N m.
About the authors
V. E Pukha
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS; Hydrogen Energy Center Ltd.
Author for correspondence.
Email: pve@icp.ac.ru
Chernogolovka, Russia; Chernogolovka, Russia
G. V Nechaev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
Email: pve@icp.ac.ru
Chernogolovka, Russia
E. N Kabachkov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS; Osipyan Institute of Solid State Physics RAS
Email: pve@icp.ac.ru
Chernogolovka, Russia; Chernogolovka, Russia
I. N Lukina
Baikov Institute of Metallurgy and Materials Science RAS
Email: pve@icp.ac.ru
Moscow, Russia
E. I Drozdova
Baikov Institute of Metallurgy and Materials Science RAS
Email: pve@icp.ac.ru
Moscow, Russia
O. P Chernogorova
Baikov Institute of Metallurgy and Materials Science RAS
Email: pve@icp.ac.ru
Moscow, Russia
References
- Кудашев С.В. // Fluorine Notes. 2020. V. 3 (130). P. 2020. http://ru.notes.fluorinel.ru/public/2020/3_2020/article_2.html
- Puts G.J., Crouse P., Ameduri B.M. // Chem. Rev. 2019. V. 119. № 3. P. 1763. https://doi.org/10.1021/acs.chemrev.8b00458
- Piwowarczyk J., Jedrzejewski R., Moszyński D., Kwiatkowski K., Niemczyk A., Baranowska J. // Polymers. 2019. V. 11. № 10. P. 1629. https://doi.org/10.3390/polym11101629
- Ju Y., Ai L., Qi X., Li J., Song W. // Materials. 2023. V. 16. № 10. P. 3764. https://doi.org/10.3390/ma16103764
- Sharifahmadian O., Pakseresht A., Mirzaei S., Eliáš M., Galusek D. // Diam. Relat. Mater. 2023. V. 138. P. 110252. https://doi.org/10.1016/j.diamond.2023.110252
- Kim S.H., Kim M., Um M.S., Choi W.J., Lee J.H., Yang Y.S., Lee S.J. // Sci. Rep. 2019. V. 9. № 1. P. 10664. https://doi.org/10.1038/s41598-019-46993-0
- Grysenko K., Kolomzorov Y., Lyvyn P., Kondratenko O., Sopinsky M., Lebedyeva I., Niemczyk A., Baranowska J., Moszyński D., Villringer C., Schrader S. // Macromol. Mater. Eng. 2023. V. 308. № 6. P. 2200617. https://doi.org/10.1002/mame.202200617
- Gaber H., Busmann H.G., Hiss R., Hertel IV., Romberg H., Fink J., Bruder F., Brenn R. // J. Phys. Chem. 1993. V. 97. № 31. P. 8244. https://doi.org/10.1021/j100133a021
- Popok V.N., Barke I., Campbell E.E., Meiwes-Broer K.H. // Surf. Sci. Rep. 2011. V. 66. Iss. 10. P. 347. https://doi.org/10.1016/j.surfrep.2011.05.002
- Pukha V.E., Zubarev E.N., Drozdov A.N., Pugachov A.T., Jeong S.H., Nam S.C. // J. Phys. D. 2012. V. 45. Iss. 33. P. 335302. https://doi.org/10.1088/0022-3727/45/33/335302
- Penkov O.V., Pukha V.E., Zubarev E.N. et al. // Tribol. Int. 2013. V. 60. P. 127. https://doi.org/10.1016/j.triboint.2012.11.011
- Pukha V.E., Karbovskii V.L., Drozdov A.N., Pugachov A.T. // J. Phys. D. 2013. V. 46. Iss. 48. P. 485305. https://doi.org/10.1088/0022-3727/46/48/485305
- Penkov O.V., Pukha V.E., Starikova S.L., Khadem M., Starikov V.V., Maleev M.V., Kim D.E. // Biomaterials. 2016. V. 102. P. 130. https://doi.org/10.1016/j.biomaterials.2016.06.029
- Khadem M., Pukha V.E., Penkov O.V., Khodos I.I., Belmesov A.A., Nechaev G.V., Kabachkov E.N., Karaseev P.A., Kim D.E. // Surf. Coat. Technol. 2021. V. 424. P. 127670. https://doi.org/10.1016/j.surfcoat.2021.127670
- Wang J., Ma J., Huang W., Wang L., He H., Liu C. // Surf. Coat. Technol. 2017. V. 316. P. 22. https://doi.org/10.1016/j.surfcoat.2017.02.065
- Zhang L., Wang F., Qiang L., Gao K., Zhang B., Zhang J. // RSC Adv. 2015. V. 5. Iss. 13. P. 9635. https://doi.org/10.1039/C4RA14078H
- https://fluralit.ru/ftoroplast/fluralit-issledovanie
- Luff P.P., White M. // Vacuum. 1968. V. 18. № 8. P. 437. https://doi.org/10.1016/0042-207X(68)90336-9
- Grytsenko K.P. // Russ. J. Gen. Chem. 2009. V. 79. P. 642. https://doi.org/10.1134/S1070363209030463
- Малеев М.Б., Зубарев Е.Н., Пуха В.Е., Дроздов А.Н., Вус А.С. // Металлофизика и новейшие технологии. 2015. Т. 37. № 6. С. 777. http://dspace.nbuv.gov.ua/handle/123456789/112255
- Diaz J., Paolicelli G., Ferrer S., Comin F. // Phys. Rev. B. 1996. V. 54. № 11. P. 8064. https://doi.org/10.1103/PhysRevB.54.8064
- Wang J., Ma J., Huang W., Wang L., He H., Liu C. // Surf. Coat. Technol. 2017. V. 316. P. 22. https://doi.org/10.1016/j.surfcoat.2017.02.065
- Lin Y.H., Syue Y.C., Lin H.D., Chen U.S., Chang Y.S., Chen J.R., Shih H.C. // Appl. Surf. Sci. 2008. V. 255. Iss. 5. P. 2139. https://doi.org/10.1016/j.apsusc.2008.07.084
- Nakao S., Yukimura K., Nakano S., Ogiso H. // IEEE Trans. Plasma Sci. 2013. V. 41. № 8. P. 1819. https://doi.org/10.1109/TPS.2013.2256800
- Yumitori S. // J. Mater. Sci. 2000. V. 35. P. 139. https://doi.org/10.1023/A:1004761103919
- Pukha V.E., Glukhov A.A., Belmesov A.A., Kabachkov E.N., Khodos I.I., Khadem M., Kim D.-E., Karaseov P.A. // Vacuum. 2023. V. 218. P. 112643. https://doi.org/10.1016/j.vacuum.2023.112643
- Ferrari A.C., Robertson J. // Phys. Rev. B. 2000. V. 61. Iss. 20. P. 14095. https://doi.org/10.1103/PhysRevB.61.14095
- Ferrari A.C. // Surf. Coat. Technol. 2004. V. 180. P. 190. https://doi.org/10.31857/S1028096024060106, EDN: DUXGFU 10.1016/j.surfcoat.2003.10.146
- Mallet-Ladeira P., Puech P., Toulouse C., Cazayous M., Ratel-Ramond N., Weisbecker P., Monthoux M. // Carbon. 2014. V. 80. P. 629. https://doi.org/10.1016/j.carbon.2014.09.006
- Пуха В.Е., Бельмесов А.А., Кабачков Е.Н., Нечаев Г.В., Лукина И.Н., Дроздова Е.И., Черногорова О.П. // Поверхность. Рентген., синхротр. и нейтрон. исслед. № 6. 2024. С. 70. https://doi.org/10.31857/S1028096024060106, EDN: DUXGFU
- Fontaine J., Donnet C., Erdemir A. // Tribology of Diamond-Like Carbon Films: Fundamentals and Applications. Boston: Spinger, 2008. P. 139. https://doi.org/10.1007/978-0-387-49891-1_5
- Rajak D.K., Kumar A., Behera A., Menezes P.L. // Appl. Sci. 2021. V. 11. № 10. P. 4445. https://doi.org/10.3390/app11104445
- Wang J., Ma J., Huang W., Wang L., He H., Liu C. // Surf. Coat. Technol. 2017. V. 316. P. 22. https://doi.org/10.1016/j.surfcoat.2017.02.065
- Imai T., Hartgat T., Tanimoto T., Isono R., Iijima Y., Suda Y., Takikawa H., Kamiya M., Toki M., Hasegawa Y., Kaneko S., Kunitsugu S., Ito M. // Vacuum. 2019. V. 167. P. 536. https://doi.org/10.1016/j.vacuum.2018.07.009
Supplementary files


