Features of the dynamics of a rotating shaft with nonlinear models of internal damping and elasticity

封面

如何引用文章

全文:

详细

The paper analyzes the influence of nonlinear (cubic) internal damping (in the Kelvin–Feucht model) and cubic nonlinearity of elastic forces on the dynamics of a rotating flexible shaft with a distributed mass. The shaft is modeled by a Bernoulli–Euler rod using the Green function, the discretization and reduction of the problem of rotating shaft dynamics to an integral equation are performed. It is revealed that in such a system there is always a branch of limited periodic movements (self-oscillations) at a supercritical rotation speed. In addition, with low internal damping, the periodic branch continues into the subcritical region: when the critical velocity is reached, the subcritical Poincare–Andronov–Hopf bifurcation is realized and there is an unstable branch of periodic movements, below the branch of stable periodic self-oscillations (the occurrence of hysteresis with a change in rotation speed). With an increase in the internal friction coefficient, the hysteresis phenomenon disappears and at a critical rotation speed, a soft excitation of self-oscillations of the rotating shaft occurs through the supercritical Poincare–Andronov–Hopf bifurcation.

全文:

1. Введение. Эффекты влияния внутреннего демпфирования на динамику вращающихся валов хорошо известны в технике. Оно играет две противоположные роли – демпфирования и дестабилизации, из которых при достаточно малых скоростях вращения доминирует первая, а при больших – вторая [1]. Даже в идеально сбалансированном вале при определенных (закритических) скоростях вращения под действием циркуляционных сил, вызванных силами внутреннего демпфирования, возникает самовозбуждение поперечных колебаний – динамическая потеря устойчивости (бифуркация Пуанкаре–Андронова–Хопфа) ­[1–4]. В этой работе под критической скоростью понимается скорость вращения вала, при которой происходит бифуркация, в отличие от случая, когда скорость вращения вала совпадает с собственной частотой его изгибных колебаний.

Влияние внутреннего демпфирования, по всей вероятности, впервые было достаточно полно описано в работе Кимпбалла [5] и продемонстрировано в экспериментах Ньюкирка [6]. В последующем вопросы устойчивости вращаю­щихся роторов при наличии линейного внутреннего демпфирования были рассмотрены в работе [7]. Причем основным эффектом, связанным с наличием внутреннего демпфирования, является самовозбуждение изгибных колебаний. В последние годы усовершенствуется подход к моделированию эффектов внутреннего демпфирования ­[8–11]. Тем не менее особенности поведения в закритической области после бифуркации ранее подробно не рассматривались. Ограничение поперечных колебаний вала возможно как за счет внешних устройств [12], так и при учете нелинейностей в законе упругого деформирования вала.

Целью настоящей работы является анализ динамики вращающегося деформируемого вала в закритической области с учетом нелинейных членов в законе внутреннего демпфирования и законе упругости.

2. Расчетная схема. Рассматривается гибкий вал круглого постоянного поперечного сечения, вращающийся вокруг своей продольной оси с постоянной угловой скоростью ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHjpWDaaa@32D7@ . Оба конца вала установлены в жестких (недеформируемых) опорах, обеспечивающих свободное вращение вала, но исключающих смещение и поворот его концевых сечений относительно поперечных осей. Вал имеет погонную массу m R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGTbWaaSbaaSqaaiaadkfaaeqaaaaa@32FF@ , которая равномерно распределена по его длине l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGSbaaaa@31FB@ . Гироскопическими эффектами пренебрегаем. Вал моделируется стержнем Бернулли–Эйлера с включением дополнительных членов, учитывающих нелинейно-вязкое трение в модели Кельвина–Фойхта и кубической нелинейностью в законе упругости.

Учитываются силы внешнего трения вала, пропорциональные его абсолютной поперечной скорости колебаний. Поперечные колебания вала будем рассматривать относительно неподвижной системы координат Oxyz MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGaamiEaiaadMhacaWG6baaaa@34D8@  с началом на левой опоре (рис. 1). Орты i , j , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqaceWFPbGbaS aacaGGSaGaaGPaVlqa=PgagaWcaiaacYcacaaMc8Uab83Aayaalaaa aa@3E03@  связаны с осями Oxyz MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGaamiEaiaadMhacaWG6baaaa@34D8@ .

 

Рис. 1. Расчетная схема вращающегося вала: 1 – траектория прецессии, 2 – направление вращения.

 

Рис. 2. Диаграмма Аргана в диапазоне скоростей вращения Ω30;32.

 

3. Учет внутреннего демпфирования при распределенной массе вращающегося вала. В линейной теории для описания внутреннего демпфирования в случае одноосного напряженного состояния обычно используется модели Кельвина–Фойхта для упруго-вязких тел [13]:

σ=E ε+ T V ε ˙ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHdpWCcqGH9aqpcaWGfbWaaeWaaeaacqaH1o qzcqGHRaWkcaWGubWaaSbaaSqaaiaadAfaaeqaaOGaaGPaVlqbew7a LzaacaaacaGLOaGaayzkaaaaaa@3DD4@ ,

где E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGfbaaaa@31D4@ – модуль упругости материала, ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH1oqzaaa@32B1@ – деформация, T V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGubWaaSbaaSqaaiaadAfaaeqaaaaa@32EA@ – характерное время (произведение E T V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGfbGaaGPaVlaadsfadaWgaaWcbaGaamOvaa qabaaaaa@353F@  представляет собой коэффициент вязкости).

Для учета внутреннего демпфирования в материале вала с равномерно распределенной массой необходимо во вращающейся системе координат определить осевую деформацию в выбранной точке материальной среды. Обозначим кривизну вала κ z,t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaGGabiqb=P7aRz aalaWaaeWaaeaacaWG6bGaaiilaiaadshaaiaawIcacaGLPaaaaaa@3E80@ . В неподвижной системе координат Oxyz MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGaamiEaiaadMhacaWG6baaaa@34D8@ , z 0,l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG6bGaeyicI48aamWaaeaacaaIWaGaaiilai aaykW7caWGSbaacaGLBbGaayzxaaaaaa@3965@ , кривизна имеет вид κ z,t = κ s z;t i s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaGGabiqb=P7aRz aalaWaaeWaaeaacaWG6bGaaiilaiaadshaaiaawIcacaGLPaaacaaM c8Uaeyypa0JaaGPaVlabeQ7aRnaaBaaaleaacaWGZbaabeaakmaabm aabaGaamOEaiaacUdacaaMc8UaamiDaaGaayjkaiaawMcaaiaaykW7 ieqaceGFPbGbaSaadaWgaaWcbaGaam4Caaqabaaaaa@4EFB@ , s=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGZbGaeyypa0JaaGymaiaacYcacaaMc8UaaG Omaaaa@36BA@  и во вращающейся вместе с валом системе координат O x ˜ y ˜ z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGabmiEayaaiaGabmyEayaaiaGaamOEaa aa@34F6@ , z 0,l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG6bGaeyicI48aamWaaeaacaaIWaGaaiilai aaykW7caWGSbaacaGLBbGaayzxaaaaaa@3965@ , кривизна κ z,t = κ ˜ s z;t i ˜ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqacuWF6oWAgaWcamaabmaabaGaamOEaiaacY cacaWG0baacaGLOaGaayzkaaGaaGPaVlabg2da9iaaykW7cuaH6oWA gaacamaaBaaaleaacaWGZbaabeaakmaabmaabaGaamOEaiaacUdaca aMc8UaamiDaaGaayjkaiaawMcaaiaaykW7ruavP1wzZbItLDhis9wB H5gaiqqaceGFPbGbaGGbaSaadaWgaaWcbaGaam4Caaqabaaaaa@4D1F@ , s=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGZbGaeyypa0JaaGymaiaacYcacaaMc8UaaG Omaaaa@36BA@ . Базисы i s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqaceWFPbGbaS aadaWgaaWcbaGaam4Caaqabaaaaa@38B6@  и i ˜ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqaceWFPbGbaG GbaSaadaWgaaWcbaGaam4Caaqabaaaaa@38C4@ , s=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGZbGaeyypa0JaaGymaiaacYcacaaMc8UaaG Omaaaa@36BA@ – ортонормированы, т.е. i s i t = i ˜ s i ˜ t = δ st MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqaceWFPbGbaS aadaWgaaWcbaGaam4CaaqabaGccaaMc8UaeyyXICTaaGPaVlqa=Lga gaWcamaaBaaaleaacaWG0baabeaakiaaykW7cqGH9aqpceWFPbGbaS GbaGaadaWgaaWcbaGaam4CaaqabaGccaaMc8UaeyyXICTaaGPaVlqa =LgagaWcgaacamaaBaaaleaacaWG0baabeaakiabg2da9iaaykW7cq aH0oazdaWgaaWcbaGaam4CaiaaykW7caWG0baabeaaaaa@548B@ . В силу инвариантности вектора кривизны верно равенство1:

  κ z;t = κ s z;t i s = κ ˜ s z;t i ˜ s t ;s=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqacuWF6oWAgaWcamaabmaabaGaamOEaiaacU dacaaMc8UaamiDaaGaayjkaiaawMcaaiabg2da9iabeQ7aRnaaBaaa leaacaWGZbaabeaakmaabmaabaGaamOEaiaacUdacaaMc8UaamiDaa GaayjkaiaawMcaaiaaykW7ieqaceGFPbGbaSaadaWgaaWcbaGaam4C aaqabaGccqGH9aqpcuaH6oWAgaacamaaBaaaleaacaWGZbaabeaakm aabmaabaGaamOEaiaacUdacaaMc8UaamiDaaGaayjkaiaawMcaaiaa ykW7ceGFPbGbaSGbaGaadaWgaaWcbaGaam4CaaqabaGcdaqadaqaai aadshaaiaawIcacaGLPaaacaGG7aGaaGPaVlaaykW7caWGZbGaeyyp a0JaaGymaiaacYcacaaMc8UaaGPaVlaaikdaaaa@6122@               (3.1)

Заметим, что наряду с инвариантной записью необходимо различать мат­ричные отображения κ O x ˜ y ˜ z = κ ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabcaqaaGGabiqb=P7aRzaalaaacaGLiWoada WgaaWcbaGaam4taiqadIhagaacaiqadMhagaacaiaadQhaaeqaaOGa eyypa0Jaf8NUdSMbaGaaaaa@3B4E@  и κ Oxyz =κ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabcaqaaGGabiqb=P7aRzaalaaacaGLiWoada WgaaWcbaGaam4taiaadIhacaWG5bGaamOEaaqabaGccaaMc8Uaeyyp a0JaaGPaVlab=P7aRbaa@3E37@ , которые привязаны к различным базисам. Связь между координатами в различных базисах определяется ортогональной матрицей поворота S φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFtbWaae WaaeaacqaHgpGAaiaawIcacaGLPaaaaaa@3AB1@ , где φ=ωt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHgpGAcqGH9aqpcqaHjpWDcaWG0baaaa@3693@ – угол поворота:

κ=S φ κ ˜ :S φ = cos φ sin φ sin φ cos φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqacqWF6oWAcaaMc8EeduuDJXwAKbYu51MyVX gaiqqacqGF9aqpcaaMc8EefqvATv2CG4uz3bIuV1wyUbacfeGaa03u amaabmaabaGaeqOXdOgacaGLOaGaayzkaaGaaGPaVlqb=P7aRzaaia GaaGPaVlaacQdacaaMc8UaaGPaVlaa9nfadaqadaqaaiabeA8aQbGa ayjkaiaawMcaaiaaykW7cqGH9aqpcaaMc8+aamWaaeaafaqabeGaca aabaGaci4yaiaac+gacaGGZbWaaeWaaeaacqaHgpGAaiaawIcacaGL PaaaaeaaciGGZbGaaiyAaiaac6gadaqadaqaaiabeA8aQbGaayjkai aawMcaaaqaaiabgkHiTiaaykW7ciGGZbGaaiyAaiaac6gadaqadaqa aiabeA8aQbGaayjkaiaawMcaaaqaaiGacogacaGGVbGaai4Camaabm aabaGaeqOXdOgacaGLOaGaayzkaaaaaaGaay5waiaaw2faaaaa@734A@ .

Опираясь на гипотезу Бернулли–Эйлера, осевая деформация в выбранной точке материальной среды может быть представлена во вращающейся вместе с валом системе координат как

ε z x ˜ , y ˜ ,z;t i 3 = p × κ = x ˜ κ ˜ 2 z;t + y ˜ κ ˜ 1 z;t i 3 ; p = x ˜ i ˜ 1 + y ˜ i ˜ 2 , κ = κ ˜ 1 z;t i ˜ 1 + κ ˜ 2 z;t i ˜ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiabew7aLnaaBaaaleaacaWG6baabeaakm aabmaabaGabmiEayaaiaGaaiilaiaaykW7ceWG5bGbaGaacaGGSaGa aGPaVlaadQhacaGG7aGaaGPaVlaadshaaiaawIcacaGLPaaacaaMc8 EefqvATv2CG4uz3bIuV1wyUbaceeGab8xAayaalaWaaSbaaSqaaiaa iodaaeqaaOGaaGPaVlabg2da9iaaykW7cqGHsislcaaMc8Uab8hCay aalaGaaGPaVlabgEna0kaaykW7iiqacuGF6oWAgaWcaiaaykW7cqGH 9aqpcaaMc8+aaeWaaeaacqGHsislcaaMc8UabmiEayaaiaGaaGPaVl qbeQ7aRzaaiaWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWG6bGa ai4oaiaaykW7caWG0baacaGLOaGaayzkaaGaaGPaVlabgUcaRiaayk W7ceWG5bGbaGaacaaMc8UafqOUdSMbaGaadaWgaaWcbaGaaGymaaqa baGcdaqadaqaaiaadQhacaGG7aGaaGPaVlaadshaaiaawIcacaGLPa aaaiaawIcacaGLPaaacaaMc8Uab8xAayaalaWaaSbaaSqaaiaaioda aeqaaOGaaGPaVlaacUdaaeaaceWFWbGbaSaacaaMc8Uaeyypa0JaaG PaVlqadIhagaacaiaaykW7ceWFPbGbaSGbaGaadaWgaaWcbaGaaGym aaqabaGccaaMc8Uaey4kaSIaaGPaVlqadMhagaacaiaaykW7ceWFPb GbaSGbaGaadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaaGPaVlaaykW7 cuGF6oWAgaWcaiaaykW7cqGH9aqpcaaMc8UafqOUdSMbaGaadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadQhacaGG7aGaaGPaVlaadsha aiaawIcacaGLPaaacaaMc8Uab8xAayaalyaaiaWaaSbaaSqaaiaaig daaeqaaOGaaGPaVlabgUcaRiaaykW7cuaH6oWAgaacamaaBaaaleaa caaIYaaabeaakmaabmaabaGaamOEaiaacUdacaaMc8UaamiDaaGaay jkaiaawMcaaiaaykW7ceWFPbGbaSGbaGaadaWgaaWcbaGaaGOmaaqa baGccaGGUaGaaGPaVdaaaa@B9F7@

Или в матричной форме во вращающейся системе координат:

ε z x ˜ , y ˜ ,z;t = x ˜ κ ˜ 2 z;t + y ˜ κ ˜ 1 z;t = p ˜ T R κ ˜ ; p ˜ = x ˜ y ˜ ,R= 0 1 1 0 , κ ˜ = κ ˜ 1 κ ˜ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiabew7aLnaaBaaaleaacaWG6baabeaakm aabmaabaGabmiEayaaiaGaaiilaiaaykW7ceWG5bGbaGaacaGGSaGa aGPaVlaadQhacaGG7aGaaGPaVlaadshaaiaawIcacaGLPaaacaaMc8 Uaeyypa0JaaGPaVlabgkHiTiaaykW7ceWG4bGbaGaacaaMc8UafqOU dSMbaGaadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadQhacaGG7a GaaGPaVlaadshaaiaawIcacaGLPaaacaaMc8Uaey4kaSIaaGPaVlqa dMhagaacaiaaykW7cuaH6oWAgaacamaaBaaaleaacaaIXaaabeaakm aabmaabaGaamOEaiaacUdacaaMc8UaamiDaaGaayjkaiaawMcaaiaa ykW7cqGH9aqpcaaMc8EefqvATv2CG4uz3bIuV1wyUbaceeGab8hCay aaiaWaaWbaaSqabeaacaWGubaaaOGaaGPaVlaa=jfacaaMc8occeGa f4NUdSMbaGaacaaMc8Uaae4oaaqaaiqa=bhagaacaiaaykW7cqGH9a qpcaaMc8+aaiWaaeaafaqabeGabaaabaGabmiEayaaiaaabaGabmyE ayaaiaaaaaGaay5Eaiaaw2haaiaacYcacaaMc8UaaGPaVlaaykW7ca aMc8Uaa8NuaiaaykW7cqGH9aqpcaaMc8+aamWaaeaafaqabeGacaaa baGaaGimaaqaaiabgkHiTiaaykW7caaIXaaabaGaaGymaaqaaiaaic daaaaacaGLBbGaayzxaaGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7 cuGF6oWAgaacaeXafv3ySLgzGmvETj2BSbacfeGae0xpa0JaaGPaVp aacmaabaqbaeqabiqaaaqaaiqbeQ7aRzaaiaWaaSbaaSqaaiaaigda aeqaaaGcbaGafqOUdSMbaGaadaWgaaWcbaGaaGOmaaqabaaaaaGcca GL7bGaayzFaaGaaGPaVlaac6caaaaa@AB5C@

Если для материала рассматривать линейный закон Гука и использовать модель стержня Бернулли–Эйлера, то изгибающий момент для сечения с двумя осями симметрии I x ˜ = I y ˜ = I R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGjbWaaSbaaSqaaiqadIhagaacaaqabaGcca aMc8Uaeyypa0JaaGPaVlaadMeadaWgaaWcbaGabmyEayaaiaaabeaa kiaaykW7cqGH9aqpcaaMc8UaamysamaaBaaaleaacaWGsbaabeaaaa a@3F34@  описывается следующим выражением [14]:

M = M ˜ =E I R κ ˜ =E I R κ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqaceWFnbGbaS aacaaMc8Uaeyypa0Jab8xtayaalyaaiaGaeyypa0JaaGPaVlaadwea caWGjbWaaSbaaSqaaiaadkfaaeqaaOGaaGPaVJGabiqb+P7aRzaaly aaiaGaeyypa0JaamyraiaadMeadaWgaaWcbaGaamOuaaqabaGccaaM c8Uaf4NUdSMbaSaaaaa@4A81@ .

Отметим, что координаты точки среды x ˜ , y ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiqadIhagaacaiaacYcacaaMc8Uabm yEayaaiaaacaGLOaGaayzkaaaaaa@36E7@  во вращающейся вместе с валом системе отсчета при вращении не меняются, исходя из этого, скорость деформации ε ˙ z x ˜ , y ˜ ,z;t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaH1oqzgaGaamaaBaaaleaacaWG6baabeaakm aabmaabaGabmiEayaaiaGaaiilaiaaykW7ceWG5bGbaGaacaGGSaGa aGPaVlaadQhacaGG7aGaaGPaVlaadshaaiaawIcacaGLPaaaaaa@4049@  для фиксированной точки среды x ˜ , y ˜ =const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiqadIhagaacaiaacYcacaaMc8Uabm yEayaaiaaacaGLOaGaayzkaaGaeyypa0Jaae4yaiaab+gacaqGUbGa ae4Caiaabshaaaa@3CA3@  в мат­ричной форме имеет вид:

  ε ˙ z x ˜ , y ˜ ,z;t = x ˜ κ ˜ ˙ 2 z;t + y ˜ κ ˜ ˙ 1 z;t = p ˜ T R κ ˜ ˙ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaH1oqzgaGaamaaBaaaleaacaWG6baabeaakm aabmaabaGabmiEayaaiaGaaiilaiaaykW7ceWG5bGbaGaacaGGSaGa aGPaVlaadQhacaGG7aGaaGPaVlaadshaaiaawIcacaGLPaaacaaMc8 Uaeyypa0JaaGPaVlabgkHiTiaaykW7ceWG4bGbaGaacaaMc8UafqOU dSMbaGGbaiaadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadQhaca GG7aGaaGPaVlaadshaaiaawIcacaGLPaaacaaMc8Uaey4kaSIaaGPa VlqadMhagaacaiaaykW7cuaH6oWAgaacgaGaamaaBaaaleaacaaIXa aabeaakmaabmaabaGaamOEaiaacUdacaaMc8UaamiDaaGaayjkaiaa wMcaaiaaykW7cqGH9aqpcaaMc8EefqvATv2CG4uz3bIuV1wyUbacee Gab8hCayaaiaWaaWbaaSqabeaacaWGubaaaOGaaGPaVlaa=jfacaaM c8occeGaf4NUdSMbaGGbaiaaaaa@727E@ .             (3.2)

Вектор угловой скорости поворота ω =ω i 3 = φ ˙ i 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqacuWFjpWDgaWcaiaaykW7rmqr1ngBPrgitL xBI9gBaGabbiab+1da9iaaykW7cqaHjpWDcaaMc8EefqvATv2CG4uz 3bIuV1wyUbacfeGab0xAayaalaWaaSbaaSqaaiaaykW7caaIZaaabe aakiaaykW7cqGH9aqpcaaMc8UafqOXdOMbaiaacaaMc8Uab0xAayaa laWaaSbaaSqaaiaaykW7caaIZaaabeaaaaa@5348@  сечения вала определяется скоростью поворота подвижного базиса относительно неподвижного базиса, тогда как i ˜ ˙ 1 = ω × i ˜ 1 , i ˜ ˙ 2 = ω × i ˜ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqaceWFPbGbaG GbaSGbaiaadaWgaaWcbaGaaGymaaqabaGccaaMc8Uaeyypa0JaaGPa VJGabiqb+L8a3zaalaGaaGPaVlabgEna0kaaykW7ceWFPbGbaGGbaS aadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaGPaVlaaykW7ceWFPbGb aGGbaSGbaiaadaWgaaWcbaGaaGOmaaqabaGccaaMc8Uaeyypa0JaaG PaVlqb+L8a3zaalaGaaGPaVlabgEna0kaaykW7ceWFPbGbaGGbaSaa daWgaaWcbaGaaGOmaaqabaaaaa@589F@ .

При движении и меняющемся во времени векторе кривизны необходимо учитывать материальную производную, следящую за выбранной точкой деформируемой среды, а именно:

  κ ˙ = t κ s i s = t κ ˜ s i ˜ s , i ˜ ˙ s = ω × i ˜ s ; t κ s i s = κ ˙ s i s , t κ ˜ s i ˜ s = κ ˜ ˙ s i ˜ s + κ ˜ s i ˜ ˙ s ; κ ˙ = κ ˜ ˙ s i ˜ s + ω × κ ˜ s i ˜ s = κ ˜ ˙ s i ˜ s + ω × κ ; κ ˜ ˙ s i ˜ s = κ ˙ ω × κ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaaceqaaGGabiqb=P7aRzaalyaacaGaaGPaVhXafv 3ySLgzGmvETj2BSbaceeGae4xpa0JaaGPaVpaalaaabaGaeyOaIyla baGaeyOaIyRaamiDaaaadaqadaqaaiabeQ7aRnaaBaaaleaacaWGZb aabeaakiaaykW7ruavP1wzZbItLDhis9wBH5gaiuqaceqFPbGbaSaa daWgaaWcbaGaam4CaaqabaaakiaawIcacaGLPaaacaaMc8Uaeyypa0 ZaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaaiaaykW7daqadaqa aiqbeQ7aRzaaiaWaaSbaaSqaaiaadohaaeqaaOGaaGPaVlqa9Lgaga acgaWcamaaBaaaleaacaWGZbaabeaaaOGaayjkaiaawMcaaiaacYca caaMc8UaaGPaVlaaykW7caaMc8Uab0xAayaaiyaalyaacaWaaSbaaS qaaiaadohaaeqaaOGaaGPaVlabg2da9iaaykW7cuWFjpWDgaWcaiaa ykW7cqGHxdaTcaaMc8Uab0xAayaalyaaiaWaaSbaaSqaaiaadohaae qaaOGaai4oaaqaamaalaaabaGaeyOaIylabaGaeyOaIyRaamiDaaaa daqadaqaaiabeQ7aRnaaBaaaleaacaWGZbaabeaakiaaykW7ceqFPb GbaSaadaWgaaWcbaGaam4CaaqabaaakiaawIcacaGLPaaacqGH9aqp caaMc8UafqOUdSMbaiaadaWgaaWcbaGaam4CaaqabaGccaaMc8Uab0 xAayaalaWaaSbaaSqaaiaadohaaeqaaOGaaiilaiaaykW7caaMc8Ua aGPaVlaaykW7daWcaaqaaiabgkGi2cqaaiabgkGi2kaadshaaaGaaG PaVpaabmaabaGafqOUdSMbaGaadaWgaaWcbaGaam4CaaqabaGccaaM c8Uab0xAayaaiyaalaWaaSbaaSqaaiaadohaaeqaaaGccaGLOaGaay zkaaGaaGPaVlabg2da9iaaykW7cuaH6oWAgaacgaGaamaaBaaaleaa caWGZbaabeaakiaaykW7ceqFPbGbaGGbaSaadaWgaaWcbaGaam4Caa qabaGccaaMc8Uaey4kaSIaaGPaVlqbeQ7aRzaaiaWaaSbaaSqaaiaa dohaaeqaaOGaaGPaVlqa9LgagaacgaWcgaGaamaaBaaaleaacaWGZb aabeaakiaacUdaaeaacuWF6oWAgaWcgaGaaiaaykW7cqGH9aqpcaaM c8UafqOUdSMbaGGbaiaadaWgaaWcbaGaam4CaaqabaGccaaMc8Uab0 xAayaaiyaalaWaaSbaaSqaaiaadohaaeqaaOGaaGPaVlabgUcaRiaa ykW7cuWFjpWDgaWcaiaaykW7cqGHxdaTcaaMc8+aaeWaaeaacuaH6o WAgaacamaaBaaaleaacaWGZbaabeaakiaaykW7ceqFPbGbaGGbaSaa daWgaaWcbaGaam4CaaqabaaakiaawIcacaGLPaaacaaMc8Uaeyypa0 JaaGPaVlqbeQ7aRzaaiyaacaWaaSbaaSqaaiaadohaaeqaaOGaaGPa Vlqa9LgagaacgaWcamaaBaaaleaacaWGZbaabeaakiaaykW7cqGHRa WkcaaMc8Uaf8xYdCNbaSaacaaMc8Uaey41aqRaaGPaVlqb=P7aRzaa laGaai4oaaaeeG+aaaaaaivzKbWdbeaapaGafqOUdSMbaGGbaiaada WgaaWcbaGaam4CaaqabaGccaaMc8Uab0xAayaaiyaalaWaaSbaaSqa aiaadohaaeqaaOGaaGPaVlabg2da9iaaykW7cuWF6oWAgaWcgaGaai aaykW7cqGHsislcaaMc8Uaf8xYdCNbaSaacaaMc8Uaey41aqRaf8NU dSMbaSaacqWFSaalaaaa@07CA@                        (3.3)

где κ ˜ ˙ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabe aaaaa@33F7@ – производная компонент вектора кривизны, связанная с фиксированным материальным сечением вала z,t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiaadQhacaGGSaGaamiDaaGaayjkai aawMcaaaaa@353B@ , которая входит в выражение скорости деформации.

Тогда уравнение состояния для вращающегося вала (одномерного объекта) от переменных κ , κ ˙ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaGadaqaaGGabiqb=P7aRzaalaGaaiilaiaayk W7cuWF6oWAgaWcgaGaaaGaay5Eaiaaw2haaaaa@3907@  в соответствии с линейной гипотезой внутреннего демпфирования в модели Кельвина–Фойхта будет уравнением изгибающего момента M κ , κ ˙ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqaceWFnbGbaS aadaqadaqaaGGabiqb+P7aRzaalaGaaiilaiqb+P7aRzaalyaacaaa caGLOaGaayzkaaaaaa@3D3E@ , которое для вала с одинаковыми изгибными жесткостями относительно осей O x ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGabmiEayaaiaaaaa@32EA@ , O y ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGabmyEayaaiaaaaa@32EB@  имеет вид:

  M κ , κ ˙ =E I R κ + T V κ ˜ ˙ s i ˜ s =E I R κ + T V κ ˙ ω × κ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaceWHnbGbaSaadaqadaqaaGGabiqb=P7aRzaala Gaaiilaiqb=P7aRzaalyaacaaacaGLOaGaayzkaaGaaGPaVlabg2da 9iaaykW7caWGfbGaamysamaaBaaaleaacaWGsbaabeaakiaaykW7da qadaqaaiqb=P7aRzaalaGaaGPaVlabgUcaRiaaykW7caWGubWaaSba aSqaaiaadAfaaeqaaOGaaGPaVlqbeQ7aRzaaiyaacaWaaSbaaSqaai aadohaaeqaaOGaaGPaVlqahMgagaWcgaacamaaBaaaleaacaWGZbaa beaaaOGaayjkaiaawMcaaiaaykW7cqGH9aqpcaaMc8UaamyraiaadM eadaWgaaWcbaGaamOuaaqabaGccaaMc8+aamWaaeaacuWF6oWAgaWc aiaaykW7cqGHRaWkcaaMc8UaamivamaaBaaaleaacaWGwbaabeaaki aaykW7daqadaqaaiqb=P7aRzaalyaacaGaaGPaVlabgkHiTiaaykW7 cuWFjpWDgaWcaiaaykW7cqGHxdaTcaaMc8Uaf8NUdSMbaSaaaiaawI cacaGLPaaaaiaawUfacaGLDbaaaaa@7502@ ,             (3.4)

где T V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGubWaaSbaaSqaaiaadAfaaeqaaaaa@32EA@ – характерное время (время релаксации) [10], полагаем, что T V 2π/ ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGubWaaSbaaSqaaiaadAfaaeqaaOGaaGPaVl ablQMi9iaaykW7daWcgaqaaiaaikdacaaMc8UaeqiWdahabaWaaqWa aeaaiiqacuWFjpWDgaWcaaGaay5bSlaawIa7aaaaaaa@4085@ .

Для записи инвариантного уравнения в матричной форме в неподвижном базисе Oxyz, a =a i 3 , b = b s i s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGaamiEaiaadMhacaWG6bGaaiilaiaayk W7caaMc8UaeyiaIiIaaGPaVhrbuLwBLnhiov2DGi1BTfMBaGabbiqa =fgagaWcaiaaykW7cqGH9aqpcaaMc8UaamyyaiaaykW7ceWFPbGbaS aadaWgaaWcbaGaaG4maaqabaGccaGGSaGaaGPaVlaaykW7ceWFIbGb aSaacaaMc8Uaeyypa0JaaGPaVlaadkgadaWgaaWcbaGaam4Caaqaba GccaaMc8Uab8xAayaalaWaaSbaaSqaaiaadohaaeqaaaaa@588C@  используется матрица R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFsbaaaa@3769@ :

  a × b =a i 3 × b 1 i 1 + b 2 i 2 =a b 1 i 2 b 2 i 1 ; R:a i 3 × b aRb,c R 2 , c T Rc=0; R= 0 1 1 0 , R T =R,R R T =E,E= 1 0 0 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaerbuLwBLnhiov2DGi1BTfMBaGabbiqa=f gagaWcaiaaykW7cqGHxdaTcaaMc8Uab8NyayaalaGaaGPaVlabg2da 9iaaykW7caWGHbGaaGPaVlqa=LgagaWcamaaBaaaleaacaaIZaaabe aakiaaykW7cqGHxdaTcaaMc8+aaeWaaeaacaWGIbWaaSbaaSqaaiaa igdaaeqaaOGaaGPaVlqa=LgagaWcamaaBaaaleaacaaIXaaabeaaki aaykW7cqGHRaWkcaaMc8UaamOyamaaBaaaleaacaaIYaaabeaakiaa ykW7ceWFPbGbaSaadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPa aacaaMc8Uaeyypa0JaaGPaVlaadggacaaMc8+aaeWaaeaacaWGIbWa aSbaaSqaaiaaigdaaeqaaOGaaGPaVlqa=LgagaWcamaaBaaaleaaca aIYaaabeaakiaaykW7cqGHsislcaaMc8UaamOyamaaBaaaleaacaaI YaaabeaakiaaykW7ceWFPbGbaSaadaWgaaWcbaGaaGymaaqabaaaki aawIcacaGLPaaacaGG7aaabaGaa8NuaiaaykW7caGG6aGaaGPaVlaa ykW7caaMc8UaaGPaVlaadggacaaMc8Uab8xAayaalaWaaSbaaSqaai aaiodaaeqaaOGaaGPaVlabgEna0kaaykW7ceWFIbGbaSaacaaMc8Ua eyi1HSTaaGPaVlaadggacaaMc8Uaa8NuaiaaykW7caWFIbGaaiilai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyiaIiIaaGPaVlaa=nga cqGHiiIZcaWGsbWaaWbaaSqabeaacaaIYaaaaOGaaiilaiaaykW7ca aMc8UaaGPaVlaaykW7caWFJbWaaWbaaSqabeaacaWGubaaaOGaaGPa Vlaa=jfacaaMc8Uaa83yaiaaykW7cqGH9aqpcaaMc8UaaGimaiaacU daaeaacaWFsbGaaGPaVlabg2da9iaaykW7daWadaqaauaabeqaciaa aeaacaaIWaaabaGaeyOeI0IaaGPaVlaaigdaaeaacaaIXaaabaGaaG imaaaaaiaawUfacaGLDbaacaGGSaGaaGPaVlaaykW7caaMc8Uaa8Nu amaaCaaaleqabaGaamivaaaakiaaykW7cqGH9aqpcaaMc8UaeyOeI0 Iaa8NuaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8Uaa8NuaiaaykW7 caWFsbWaaWbaaSqabeaacaWGubaaaOGaaGPaVlabg2da9iaaykW7ca WFfbGaaiilaiaaykW7caaMc8Uaa8xraiaaykW7cqGH9aqpcaaMc8+a amWaaeaafaqabeGacaaabaGaaGymaaqaaiaaicdaaeaacaaIWaaaba GaaGymaaaaaiaawUfacaGLDbaacaGGUaaaaaa@EBB6@                  (3.5)

Тогда векторное уравнение в матричной форме в неподвижном базисе принимает следующий вид:

  M=E I R κ+ T V κ ˙ T V ωRκ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFnbGaaG PaVlabg2da9iaaykW7caWGfbGaamysamaaBaaaleaacaWGsbaabeaa kiaaykW7daqadaqaaGGabiab+P7aRjabgUcaRiaadsfadaWgaaWcba GaamOvaaqabaGccaaMc8Uaf4NUdSMbaiaacaaMc8UaeyOeI0IaaGPa VlaadsfadaWgaaWcbaGaamOvaaqabaGccaaMc8UaeqyYdCNaaGPaVl aa=jfacaaMc8Uae4NUdSgacaGLOaGaayzkaaaaaa@57D6@ .            (3.6)

Последнее слагаемое в (3.6), зависящее от угловой скорости E I R T V ωRκ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiaadweacaWGjbWaaSbaaSqaaiaadk faaeqaaOGaaGPaVlaadsfadaWgaaWcbaGaamOvaaqabaGccaaMc8Ua eqyYdCNaaGPaVhrbuLwBLnhiov2DGi1BTfMBaGabbiaa=jfacaaMc8 occeGae4NUdSgacaGLOaGaayzkaaaaaa@4731@ , характерно для вращающихся деформируемых твердых тел. В данном случае именно это слагаемое в изгибающем моменте приводит к появлению циркуляционных сил и учитывает механизм передачи энергии вращения вала в изгиб вала, когда изгиб в одной плоскости вызывает изгиб в перпендикулярной плоскости, пропорционально скорости вращения вала ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHjpWDaaa@32D7@  и коэффициенту вязкости E T V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGfbGaamivamaaBaaaleaacaWGwbaabeaaaa a@33B4@ .

Учет дополнительных нелинейных членов в модели Кельвина–Фойхта можно провести в форме Коссера через скорость вектора кривизны в системе координат κ ˜ ˙ s i ˜ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabe aakiaaykW7ruavP1wzZbItLDhis9wBH5gaiqqaceWFPbGbaSGbaGaa daWgaaWcbaGaam4Caaqabaaaaa@3D46@ , s=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGZbGaeyypa0JaaGymaiaacYcacaaMc8UaaG Omaaaa@36BA@ , вводя дополнительные слагаемые в законе состояния с вращающейся средой. Отметим, что скалярное произведение во вращаю­щейся системе κ ˜ ˙ s κ ˜ ˙ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabe aakiaaykW7cuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabeaaaaa@3879@  (суммирование по немому индексу s=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGZbGaeyypa0JaaGymaiaacYcacaaMc8UaaG Omaaaa@36BA@  ) с учетом (3.3) вычисляется следующим образом в инвариантной форме:

κ ˜ ˙ s κ ˜ ˙ s = κ ˜ ˙ s i ˜ s κ ˜ ˙ t i ˜ t = κ ˙ ω × κ κ ˙ ω × κ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabe aakiqbeQ7aRzaaiyaacaWaaSbaaSqaaiaadohaaeqaaOGaaGPaVlab g2da9iaaykW7daqadaqaaiqbeQ7aRzaaiyaacaWaaSbaaSqaaiaado haaeqaaOGaaGPaVhrbuLwBLnhiov2DGi1BTfMBaGabbiqa=LgagaWc gaacamaaBaaaleaacaWGZbaabeaaaOGaayjkaiaawMcaaiaaykW7cq GHflY1caaMc8+aaeWaaeaacuaH6oWAgaacgaGaamaaBaaaleaacaWG 0baabeaakiaaykW7ceWFPbGbaSGbaGaadaWgaaWcbaGaamiDaaqaba aakiaawIcacaGLPaaacaaMc8Uaeyypa0JaaGPaVpaabmaabaacceGa f4NUdSMbaSGbaiaacaaMc8UaeyOeI0IaaGPaVlqb+L8a3zaalaGaaG PaVlabgEna0kaaykW7cuGF6oWAgaWcaaGaayjkaiaawMcaaiaaykW7 cqGHflY1caaMc8+aaeWaaeaacuGF6oWAgaWcgaGaaiaaykW7cqGHsi slcaaMc8Uaf4xYdCNbaSaacaaMc8Uaey41aqRaaGPaVlqb+P7aRzaa laaacaGLOaGaayzkaaGaaGPaVdaa@81C6@ .

Например, по индукции можно учесть нелинейный, кубический член в линейной модели Кельвина–Фойхта (3.4), добавляя кубическое слагаемое κ ˜ ˙ s κ ˜ ˙ s κ ˙ ω × κ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabe aakiaaykW7cuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabeaakiaa ykW7daqadaqaaeXafv3ySLgzGmvETj2BSbaceeGaf8NUdSMbaSGbai aacaaMc8UaeyOeI0IaaGPaVlqb=L8a3zaalaGaaGPaVlabgEna0kaa ykW7cuWF6oWAgaWcaaGaayjkaiaawMcaaaaa@4F34@ :

  M κ , κ ˙ =E I R κ + T V + T VV κ ˜ ˙ s κ ˜ ˙ s κ ˜ ˙ t i ˜ t = =E I R κ + T V + T VV κ ˜ ˙ s κ ˜ ˙ s κ ˙ ω × κ = =E I R κ + T V + T VV κ ˙ ω × κ κ ˙ ω × κ κ ˙ ω × κ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaerbuLwBLnhiov2DGi1BTfMBaGabbiqa=1 eagaWcamaabmaabaacceGaf4NUdSMbaSaacaGGSaGaaGPaVlqb+P7a RzaalyaacaaacaGLOaGaayzkaaGaaGPaVlabg2da9iaaykW7caWGfb GaamysamaaBaaaleaacaWGsbaabeaakiaaykW7daWadaqaaiqb+P7a RzaalaGaaGPaVlabgUcaRiaaykW7daqadaqaaiaadsfadaWgaaWcba GaamOvaaqabaGccaaMc8Uaey4kaSIaaGPaVlaadsfadaWgaaWcbaGa amOvaiaadAfaaeqaaOGaaGPaVlqbeQ7aRzaaiyaacaWaaSbaaSqaai aadohaaeqaaOGafqOUdSMbaGGbaiaadaWgaaWcbaGaam4Caaqabaaa kiaawIcacaGLPaaacaaMc8UafqOUdSMbaGGbaiaadaWgaaWcbaGaam iDaaqabaGccaaMc8Uab8xAayaalyaaiaWaaSbaaSqaaiaadshaaeqa aaGccaGLBbGaayzxaaGaaGPaVlabg2da9iaaykW7aeaacaaMf8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcaaMc8Uaamyraiaa dMeadaWgaaWcbaGaamOuaaqabaGccaaMc8+aamWaaeaacuGF6oWAga WcaiaaykW7cqGHRaWkcaaMc8+aaeWaaeaacaWGubWaaSbaaSqaaiaa dAfaaeqaaOGaaGPaVlabgUcaRiaaykW7caWGubWaaSbaaSqaaiaadA facaWGwbaabeaakiaaykW7cuaH6oWAgaacgaGaamaaBaaaleaacaWG ZbaabeaakiaaykW7cuaH6oWAgaacgaGaamaaBaaaleaacaWGZbaabe aaaOGaayjkaiaawMcaaiaaykW7daqadaqaaiqb+P7aRzaalyaacaGa aGPaVlabgkHiTiaaykW7cuGFjpWDgaWcaiaaykW7cqGHxdaTcaaMc8 Uaf4NUdSMbaSaaaiaawIcacaGLPaaaaiaawUfacaGLDbaacaaMc8Ua eyypa0JaaGPaVdqaaiaaywW7caaMc8UaaGPaVlaaykW7caaMc8Uaey ypa0JaaGPaVlaadweacaWGjbWaaSbaaSqaaiaadkfaaeqaaOGaaGPa VpaadmaabaGaf4NUdSMbaSaacaaMc8Uaey4kaSIaaGPaVpaadmaaba GaamivamaaBaaaleaacaWGwbaabeaakiaaykW7cqGHRaWkcaaMc8Ua amivamaaBaaaleaacaWGwbGaamOvaaqabaGccaaMc8+aaeWaaeaacu GF6oWAgaWcgaGaaiaaykW7cqGHsislcaaMc8Uaf4xYdCNbaSaacaaM c8Uaey41aqRaaGPaVlqb+P7aRzaalaaacaGLOaGaayzkaaGaaGPaVl abgwSixlaaykW7daqadaqaaiqb+P7aRzaalyaacaGaaGPaVlabgkHi TiaaykW7cuGFjpWDgaWcaiaaykW7cqGHxdaTcaaMc8Uaf4NUdSMbaS aaaiaawIcacaGLPaaaaiaawUfacaGLDbaacaaMc8+aaeWaaeaacuGF 6oWAgaWcgaGaaiaaykW7cqGHsislcaaMc8Uaf4xYdCNbaSaacaaMc8 Uaey41aqRaaGPaVlqb+P7aRzaalaaacaGLOaGaayzkaaaacaGLBbGa ayzxaaGaaiOlaaaaaa@0796@                             (3.7)

где T VV MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGubWaaSbaaSqaaiaadAfacaWGwbaabeaaaa a@33C5@ – коэффициент, характеризующий степень кубической нелинейности диссипативных свойств материла вала.

Отображение инвариантного уравнения с кубической нелинейностью скоростей деформации в модели Кельвина–Фойхта в матричном виде в неподвижном базисе с учетом (3.5) и (3.6) принимает вид:

  M κ, κ ˙ =E I R κ+E I R T V 1+B κ ˙ ωRκ T κ ˙ ωRκ κ ˙ ωRκ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFnbWaae WaaeaaiiqacqGF6oWAcaGGSaGaaGPaVlqb+P7aRzaacaaacaGLOaGa ayzkaaGaaGPaVlabg2da9iaaykW7caWGfbGaamysamaaBaaaleaaca WGsbaabeaakiaaykW7cqGF6oWAcaaMc8Uaey4kaSIaaGPaVlaadwea caWGjbWaaSbaaSqaaiaadkfaaeqaaOGaaGPaVlaadsfadaWgaaWcba GaamOvaaqabaGccaaMc8+aamWaaeaacaaIXaGaaGPaVlabgUcaRiaa ykW7caWGcbGaaGPaVpaabmaabaGaf4NUdSMbaiaacaaMc8UaeyOeI0 IaaGPaVlabeM8a3jaaykW7caWFsbGaaGPaVlab+P7aRbGaayjkaiaa wMcaamaaCaaaleqabaGaamivaaaakiaaykW7daqadaqaaiqb+P7aRz aacaGaaGPaVlabgkHiTiaaykW7cqaHjpWDcaaMc8Uaa8NuaiaaykW7 cqGF6oWAaiaawIcacaGLPaaaaiaawUfacaGLDbaacaaMc8+aaeWaae aacuGF6oWAgaGaaiaaykW7cqGHsislcaaMc8UaeqyYdCNaaGPaVlaa =jfacaaMc8Uae4NUdSgacaGLOaGaayzkaaaaaa@8D2F@ ,              (3.8)

где B= T VV / T V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGcbGaeyypa0ZaaSGbaeaacaWGubWaaSbaaS qaaiaadAfacaWGwbaabeaaaOqaaiaadsfadaWgaaWcbaGaamOvaaqa baaaaaaa@3792@ .

Аналогичным образом можно ввести нелинейность любого нечетного порядка, например, нелинейность пятого порядка.

4. Учет кубической нелинейности в законе упругости. Аналогично кубическому демпфированию в законе можно учесть и кубическую нелинейность упругих сил по кривизне с коэффициентом A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGbbaaaa@31D0@ :

  M κ, κ ˙ =E I R 1+A κ T κ κ+ +E I R T V 1+B κ ˙ ωRκ T κ ˙ ωRκ κ ˙ ωRκ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaerbuLwBLnhiov2DGi1BTfMBaGabbiaa=1 eadaqadaqaaGGabiab+P7aRjaacYcacaaMc8Uaf4NUdSMbaiaaaiaa wIcacaGLPaaacaaMc8Uaeyypa0JaaGPaVlaadweacaWGjbWaaSbaaS qaaiaadkfaaeqaaOGaaGPaVpaadmaabaGaaGymaiaaykW7cqGHRaWk caaMc8UaamyqaiaaykW7daqadaqaaiab+P7aRnaaCaaaleqabaGaam ivaaaakiaaykW7cqGF6oWAaiaawIcacaGLPaaaaiaawUfacaGLDbaa caaMc8Uae4NUdSMaaGPaVlabgUcaRaqaaiaaykW7caaMc8Uaey4kaS IaamyraiaadMeadaWgaaWcbaGaamOuaaqabaGccaaMc8Uaamivamaa BaaaleaacaWGwbaabeaakiaaykW7daWadaqaaiaaigdacaaMc8Uaey 4kaSIaaGPaVlaadkeacaaMc8+aaeWaaeaacuGF6oWAgaGaaiaaykW7 cqGHsislcaaMc8UaeqyYdCNaaGPaVlaa=jfacaaMc8Uae4NUdSgaca GLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaOGaaGPaVpaabmaabaGa f4NUdSMbaiaacaaMc8UaeyOeI0IaaGPaVlabeM8a3jaaykW7caWFsb GaaGPaVlab+P7aRbGaayjkaiaawMcaaaGaay5waiaaw2faaiaaykW7 daqadaqaaiqb+P7aRzaacaGaaGPaVlabgkHiTiaaykW7cqaHjpWDca aMc8Uaa8NuaiaaykW7cqGF6oWAaiaawIcacaGLPaaacaGGUaaaaaa@A252@                                           (4.1)

где A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGbbaaaa@31D0@ – коэффициент, характеризующий степень нелинейностей упругости материала вала.

5. Уравнения движения вращающегося вала.  Для записи уравнения движения введем вектор прогибов вала u z,t = u x u y T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWF1bWaae WaaeaacaWG6bGaaiilaiaaykW7caWG0baacaGLOaGaayzkaaGaaGPa Vlabg2da9iaaykW7daGadaqaauaabeqabiaaaeaacaWG1bWaaSbaaS qaaiaadIhaaeqaaaGcbaGaamyDamaaBaaaleaacaWG5baabeaaaaaa kiaawUhacaGL9baadaahaaWcbeqaaiaadsfaaaaaaa@4903@ , который связан с вектором поворота сечений ϑ z,t = ϑ x ϑ y T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaarmqr1ngBPrgitLxBI9gBaGabbiab=f9aknaabm aabaGaamOEaiaacYcacaaMc8UaamiDaaGaayjkaiaawMcaaiaaykW7 cqGH9aqpcaaMc8+aaiWaaeaafaqabeqacaaabaGaeqy0dO0aaSbaaS qaaiaadIhaaeqaaaGcbaGaeqy0dO0aaSbaaSqaaiaadMhaaeqaaaaa aOGaay5Eaiaaw2haamaaCaaaleqabaGaamivaaaaaaa@4A8D@  и вектором кривизны κ z,t = κ x κ y T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqacqWF6oWAdaqadaqaaiaadQhacaGGSaGaam iDaaGaayjkaiaawMcaaiabg2da9maacmaabaqbaeqabeGaaaqaaiab eQ7aRnaaBaaaleaacaWG4baabeaaaOqaaiabeQ7aRnaaBaaaleaaca WG5baabeaaaaaakiaawUhacaGL9baadaahaaWcbeqaaiaadsfaaaaa aa@4108@  относительно осей Ox MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGaamiEaaaa@32DB@ , Oy MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGpbGaamyEaaaa@32DC@  дифференциальными соотношениями:

ϑ=R u ,κ= ϑ =R u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaarmqr1ngBPrgitLxBI9gBaGabbiab=f9akjaayk W7cqGH9aqpcaaMc8EefqvATv2CG4uz3bIuV1wyUbacfeGaa4Nuaiaa ykW7ceGF1bGbauaacaGGSaGaaGPaVlaaykW7iiqacqqF6oWAcaaMc8 Uaeyypa0JaaGPaVlqb=f9akzaafaGaaGPaVlabg2da9iaaykW7caGF sbGaaGPaVlqa+vhagaGbaaaa@5783@ .

Тогда, пренебрегая инерцией поворота сечений при изгибе, уравнения движения вала с погонной массой m R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGTbWaaSbaaSqaaiaadkfaaeqaaaaa@32FF@  при действии линейного внешнего трения с коэффициентом d e MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGKbWaaSbaaSqaaiaadwgaaeqaaaaa@3309@  могут быть записаны в следующем виде [14]:

  m R u ¨ z,t = Q z,t d e u ˙ z,t 0= M z,t +RQ z,t m R u ¨ z,t =R M z,t d e u ˙ z,t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaGacaabaeqabaGaamyBamaaBaaaleaacaWGsb aabeaakiaaykW7ruavP1wzZbItLDhis9wBH5gaiqqaceWF1bGbamaa daqadaqaaiaadQhacaGGSaGaamiDaaGaayjkaiaawMcaaiaaykW7cq GH9aqpcaaMc8Uab8xuayaafaWaaeWaaeaacaWG6bGaaiilaiaadsha aiaawIcacaGLPaaacaaMc8UaeyOeI0IaamizamaaBaaaleaacaWGLb aabeaakiqa=vhagaGaamaabmaabaGaamOEaiaacYcacaWG0baacaGL OaGaayzkaaaabaGaaCimaiaaykW7cqGH9aqpcaaMc8Uab8xtayaafa WaaeWaaeaacaWG6bGaaiilaiaadshaaiaawIcacaGLPaaacaaMc8Ua ey4kaSIaaGPaVlaa=jfacaaMc8Uaa8xuamaabmaabaGaamOEaiaacY cacaWG0baacaGLOaGaayzkaaaaaiaaw2haaiaaykW7caaMc8UaeyO0 H4TaamyBamaaBaaaleaacaWGsbaabeaakiaaykW7ceWF1bGbamaada qadaqaaiaadQhacaGGSaGaamiDaaGaayjkaiaawMcaaiaaykW7cqGH 9aqpcaaMc8Uaa8NuaiaaykW7ceWFnbGbayaadaqadaqaaiaadQhaca GGSaGaamiDaaGaayjkaiaawMcaaiaaykW7cqGHsislcaWGKbWaaSba aSqaaiaadwgaaeqaaOGaaGPaVlqa=vhagaGaamaabmaabaGaamOEai aacYcacaWG0baacaGLOaGaayzkaaaaaa@8D7A@ ,             (5.1)

где Q z,t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFrbWaae WaaeaacaWG6bGaaiilaiaadshaaiaawIcacaGLPaaaaaa@3B99@  и M z,t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFnbWaae WaaeaacaWG6bGaaiilaiaadshaaiaawIcacaGLPaaaaaa@3B95@  – векторы сосредоточенных поперечных сил и изгибающих моментов соответственно.

Объединяя уравнения (4.1) и (5.1), получим:

  E I R u + T V E I R u ˙ ωR u = = m R u ¨ E I R A G NL u + T VV F NL u ˙ ωR u d e u ˙ ; F NL = u ˙ T u ˙ 2ω u ˙ T R u + ω 2 u T u ; G NL = u T u . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaadweacaWGjbWaaSbaaSqaaiaadkfaae qaaerbuLwBLnhiov2DGi1BTfMBaGabbOGab8xDayaafyaafyaafyaa faGaey4kaSIaamivamaaBaaaleaacaWGwbaabeaakiaaykW7caWGfb GaamysamaaBaaaleaacaWGsbaabeaakmaabmaabaGaaGPaVlqa=vha gaGagaqbgaqbgaqbgaqbaiabgkHiTiabeM8a3jaaykW7caWFsbGaaG PaVlqa=vhagaqbgaqbgaqbgaqbaaGaayjkaiaawMcaaiabg2da9aqa aiabg2da9iabgkHiTiaad2gadaWgaaWcbaGaamOuaaqabaGcceWF1b GbamaacqGHsislcaWGfbGaamysamaaBaaaleaacaWGsbaabeaakmaa dmaabaGaamyqaiaadEeadaWgaaWcbaGaamOtaiaadYeaaeqaaOGaaG PaVlqa=vhagaGbaiabgUcaRiaadsfadaWgaaWcbaGaamOvaiaadAfa aeqaaOGaaGPaVlaadAeadaWgaaWcbaGaamOtaiaadYeaaeqaaOWaae WaaeaaceWF1bGbayGbaiaacqGHsislcqaHjpWDcaaMc8Uaa8Nuaiaa ykW7ceWF1bGbayaaaiaawIcacaGLPaaaaiaawUfacaGLDbaadaahaa WcbeqaaOGamai8gkdiIUGaaGzaVRGamai8gkdiIcaacqGHsislcaWG KbWaaSbaaSqaaiaadwgaaeqaaOGab8xDayaacaGaai4oaaqaaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaamOramaaBaaaleaacaWGobGa amitaaqabaGccqGH9aqpdaqadaqaamaabmaabaGab8xDayaagyaaca aacaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaOGab8xDayaagyaa caGaaGPaVlabgkHiTiaaykW7caaIYaGaaGPaVlabeM8a3jaaykW7da qadaqaaiqa=vhagaGbgaGaaaGaayjkaiaawMcaamaaCaaaleqabaGa amivaaaakiaaykW7caWFsbGaaGPaVlqa=vhagaGbaiaaykW7cqGHRa WkcaaMc8UaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaaGPaVpaabmaa baGab8xDayaagaaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaO GaaGPaVlqa=vhagaGbaaGaayjkaiaawMcaaiaacUdaaeabG8VaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caWGhbWaaSbaaSqaaiaad6eaca WGmbaabeaakiabg2da9maabmaabaWaaeWaaeaaceWF1bGbayaaaiaa wIcacaGLPaaadaahaaWcbeqaaiaadsfaaaGccaaMc8Uab8xDayaaga aacaGLOaGaayzkaaGaaiOlaaaaaa@C54C@                               (5.2)

Переход к безразмерным переменным и величинам осуществляется выбором двух масштабов U :=l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGvbWaaSbaaSqaaiabgEHiQaqabaGccaGG6a Gaeyypa0JaaGPaVlaaykW7caaMc8UaamiBaaaa@3A5F@ , T = m R l 4 / E I R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGubWaaSbaaSqaaiabgEHiQaqabaGccaaMc8 Uaeyypa0JaaGPaVpaakaaabaWaaSGbaeaacaWGTbWaaSbaaSqaaiaa dkfaaeqaaOGaamiBamaaCaaaleqabaGaaGinaaaaaOqaaiaadweaca WGjbWaaSbaaSqaaiaadkfaaeqaaaaaaeqaaaaa@3DCA@  и безразмерных комплексов:

ζ=z/ U * ,ξ=u/ U * ,τ=t/ T * , η V = T V / 2 T * , η e = d e l 4 / 2E I R T * ,Ω=ω T V ; η VV = T VV / 2 T * 3 l 2 ,α=A/ l 2 , f NL = F NL T * 2 l 2 , g NL = G NL l 2 ; x ˙ = T * x t = x τ , x = U * x z = x ζ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiabeA7a6jabg2da9iaaykW7daWcgaqaai aadQhaaeaacaWGvbWaaSbaaSqaaiaacQcaaeqaaaaakiaacYcacaaM c8UaaGPaVJGabiab=57a4jabg2da9maalyaabaqefqvATv2CG4uz3b IuV1wyUbaceeGaa4xDaaqaaiaadwfadaWgaaWcbaGaaiOkaaqabaaa aOGaaiilaiaaykW7caaMc8UaeqiXdqNaeyypa0ZaaSGbaeaacaWG0b aabaGaamivamaaBaaaleaacaGGQaaabeaaaaGccaGGSaGaaGPaVlaa ykW7cqaH3oaAdaWgaaWcbaGaamOvaaqabaGccqGH9aqpdaWcgaqaai aadsfadaWgaaWcbaGaamOvaaqabaaakeaadaqadaqaaiaaikdacaWG ubWaaSbaaSqaaiaacQcaaeqaaaGccaGLOaGaayzkaaaaaiaacYcaca aMc8UaaGPaVlabeE7aOnaaBaaaleaacaWGLbaabeaakiabg2da9maa lyaabaGaamizamaaBaaaleaacaWGLbaabeaakiaadYgadaahaaWcbe qaaiaaisdaaaaakeaadaqadaqaaiaaikdacaWGfbGaamysamaaBaaa leaacaWGsbaabeaakiaadsfadaWgaaWcbaGaaiOkaaqabaaakiaawI cacaGLPaaaaaGaaiilaiaaykW7caaMc8UaeuyQdCLaeyypa0JaeqyY dCNaamivamaaBaaaleaacaWGwbaabeaakiaacUdaaeaacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8+aaSGbaeaacqaH3oaAdaWgaaWcbaGaamOvaiaadAfaaeqaaOGaey ypa0JaamivamaaBaaaleaacaWGwbGaamOvaaqabaaakeaadaqadaqa aiaaikdacaWGubWaaSbaaSqaaiaacQcaaeqaaOWaaWbaaSqabeaaca aIZaaaaOGaamiBamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMca aaaacaGGSaGaaGPaVlaaykW7cqaHXoqycqGH9aqpdaWcgaqaaiaadg eaaeaacaWGSbWaaWbaaSqabeaacaaIYaaaaaaakiaacYcacaaMc8Ua aGPaVlaadAgadaWgaaWcbaGaamOtaiaadYeaaeqaaOGaeyypa0Jaam OramaaBaaaleaacaWGobGaamitaaqabaGccaWGubWaaSbaaSqaaiaa cQcaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaamiBamaaCaaaleqaba GaaGOmaaaakiaacYcacaaMc8UaaGPaVlaadEgadaWgaaWcbaGaamOt aiaadYeaaeqaaOGaeyypa0Jaam4ramaaBaaaleaacaWGobGaamitaa qabaGccaWGSbWaaWbaaSqabeaacaaIYaaaaOGaai4oaaqaaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlqa dIhagaGaaiaaykW7cqGH9aqpcaaMc8+aaSaaaeaacaWGubWaaSbaaS qaaiaacQcaaeqaaOGaaGPaVlabgkGi2kaaykW7caWG4baabaGaeyOa IyRaaGPaVlaadshaaaGaaGPaVlabg2da9iaaykW7daWcaaqaaiabgk Gi2kaaykW7caWG4baabaGaeyOaIyRaaGPaVlabes8a0baacaGGSaGa aGPaVlaaykW7ceWG4bGbauaacaaMc8Uaeyypa0JaaGPaVpaalaaaba GaamyvamaaBaaaleaacaGGQaaabeaakiaaykW7cqGHciITcaaMc8Ua amiEaaqaaiabgkGi2kaaykW7caWG6baaaiaaykW7cqGH9aqpcaaMc8 +aaSaaaeaacqGHciITcaaMc8UaamiEaaqaaiabgkGi2kaaykW7cqaH 2oGEaaGaaiOlaaaaaa@2F53@  (5.3)

С учетом (5.3) уравнение движения принимает следующий безразмерный вид:

ξ +2 η V ξ ˙ ΩR ξ =2 η e ξ ˙ ξ ¨ α g NL ξ +2 η VV f NL ξ ˙ ΩR ξ ; f NL = ξ ˙ T ξ ˙ 2Ω ξ ˙ T R ξ + Ω 2 ξ T ξ ; g NL = ξ T ξ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaGGabiqb=57a4zaagyaagaGaaGPaVlabgU caRiaaykW7caaIYaGaaGPaVlabeE7aOnaaBaaaleaacaWGwbaabeaa kiaaykW7daqadaqaaiqb=57a4zaacyaagyaagaGaaGPaVlabgkHiTi aaykW7cqqHPoWvcaaMc8ocbeGaa4NuaiaaykW7caaMc8Uaf8NVdGNb ayGbayaaaiaawIcacaGLPaaacaaMc8Uaeyypa0JaeyOeI0IaaGPaVl aaikdacaaMc8Uaeq4TdG2aaSbaaSqaaiaadwgaaeqaaOGaaGPaVlqb =57a4zaacaGaeyOeI0IaaGPaVlqb=57a4zaadaGaeyOeI0IaaGPaVp aadmaabaGaeqySdeMaaGPaVlaadEgadaWgaaWcbaGaamOtaiaaykW7 caWGmbaabeaakiaaykW7cuWF+oaEgaGbaiaaykW7cqGHRaWkcaaMc8 UaaGOmaiaaykW7cqaH3oaAdaWgaaWcbaGaamOvaiaaykW7caWGwbaa beaakiaaykW7caWGMbWaaSbaaSqaaiaad6eacaWGmbaabeaakiaayk W7daqadaqaaiqb=57a4zaacyaagaGaaGPaVlabgkHiTiaaykW7cqqH PoWvcaaMc8Uaa4NuaiaaykW7caaMc8Uaf8NVdGNbayaaaiaawIcaca GLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaOGamai4gkdiIUGaaGza VRGamai4gkdiIcaacaGG7aaabaGaamOzamaaBaaaleaacaWGobGaam itaaqabaGccqGH9aqpdaqadaqaamaabmaabaGaf8NVdGNbaiGbayaa aiaawIcacaGLPaaadaahaaWcbeqaaiaaykW7caaMc8Uaamivaiaayk W7aaGccaaMc8Uaf8NVdGNbaiGbayaacaaMc8UaeyOeI0IaaGPaVlaa ikdacaaMc8UaeuyQdCLaaGPaVpaabmaabaGaf8NVdGNbaiGbayaaai aawIcacaGLPaaadaahaaWcbeqaaiaaykW7caaMc8Uaamivaaaakiaa ykW7caGFsbGaaGPaVlaaykW7cuWF+oaEgaGbaiaaykW7cqGHRaWkca aMc8UaeuyQdC1aaWbaaSqabeaacaaIYaaaaOGaaGPaVpaabmaabaGa f8NVdGNbayaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaykW7caaMc8 UaamivaaaakiaaykW7cuWF+oaEgaGbaaGaayjkaiaawMcaaiaacUda aeabG8Vaam4zamaaBaaaleaacaWGobGaamitaaqabaGccqGH9aqpda qadaqaaiqb=57a4zaagaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaM c8UaaGPaVlaadsfaaaGccaaMc8Uaf8NVdGNbayaacaGGUaaaaaa@E664@  (5.4)

6. Получение разрешающего уравнения движения. Для сведения уравнения в частных производных к обыкновенному дифференциальному уравнению представим решение в интегральном виде с использованием функции Грина для статического прогиба стержня Бернулли–Эйлера G 40 ζ,s =δ ζs MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGhbWaaSbaaSqaaiaaisdacaaMc8UaaGimaa qabaGcdaqadaqaaiabeA7a6jaacYcacaWGZbaacaGLOaGaayzkaaGa eyypa0JaeqiTdq2aaeWaaeaacqaH2oGEcqGHsislcaWGZbaacaGLOa Gaayzkaaaaaa@41D3@ , где G kl = k l G ζ,s / ζ k s l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGhbWaaSbaaSqaaiaadUgacaaMc8UaamiBaa qabaGccqGH9aqpdaWcgaqaaiabgkGi2oaaCaaaleqabaGaam4Aaaaa kiabgkGi2oaaCaaaleqabaGaamiBaaaakiaaykW7caWGhbWaaeWaae aacqaH2oGEcaGGSaGaam4CaaGaayjkaiaawMcaaaqaaiabgkGi2kab eA7a6naaCaaaleqabaGaam4AaaaakiabgkGi2kaadohadaahaaWcbe qaaiaadYgaaaaaaaaa@4ABA@ :

    ξ ζ,τ +2 η V ξ ˙ ζ,τ ΩRξ ζ,τ = = 0 1 G 00 ζ,s 2 η e ξ ˙ s,τ ξ ¨ s,τ ds 0 1 G 00 ζ,s α g NL ξ s,τ +2 η VV f NL ξ ˙ s,τ ΩR ξ s,τ ds . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaGGabiab=57a4naabmaabaGaeqOTdONaai ilaiabes8a0bGaayjkaiaawMcaaiabgUcaRiaaikdacqaH3oaAdaWg aaWcbaGaamOvaaqabaGcdaqadaqaaiqb=57a4zaacaWaaeWaaeaacq aH2oGEcaGGSaGaeqiXdqhacaGLOaGaayzkaaGaaGPaVlabgkHiTiaa ykW7cqqHPoWvcaaMc8ocbeGaa4NuaiaaykW7cqWF+oaEdaqadaqaai abeA7a6jaacYcacqaHepaDaiaawIcacaGLPaaaaiaawIcacaGLPaaa cqGH9aqpaeaacaaMc8UaaGPaVlaaykW7cqGH9aqpdaWdXbqaaiaadE eadaWgaaWcbaGaaGimaiaaykW7caaIWaaabeaakmaabmaabaGaeqOT dONaaiilaiaadohaaiaawIcacaGLPaaadaWadaqaaiabgkHiTiaayk W7caaIYaGaaGPaVlabeE7aOnaaBaaaleaacaWGLbaabeaakiaaykW7 cuWF+oaEgaGaamaabmaabaGaam4CaiaacYcacqaHepaDaiaawIcaca GLPaaacqGHsislcaaMc8Uaf8NVdGNbamaadaqadaqaaiaadohacaGG SaGaeqiXdqhacaGLOaGaayzkaaaacaGLBbGaayzxaaGaamizaiaado haaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGccqGHsislaeaacaaM c8UaaGPaVlaaykW7cqGHsisldaWdXbqaaiaadEeadaWgaaWcbaGaaG imaiaaykW7caaIWaaabeaakmaabmaabaGaeqOTdONaaiilaiaadoha aiaawIcacaGLPaaadaWadaqaaiabeg7aHjaaykW7caWGNbWaaSbaaS qaaiaad6eacaaMc8UaamitaaqabaGccaaMc8Uaf8NVdGNbayaadaqa daqaaiaadohacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaaGPaVlabgU caRiaaykW7caaIYaGaaGPaVlabeE7aOnaaBaaaleaacaWGwbGaaGPa VlaadAfaaeqaaOGaaGPaVlaadAgadaWgaaWcbaGaamOtaiaadYeaae qaaOGaaGPaVpaabmaabaGaf8NVdGNbaiGbayaadaqadaqaaiaadoha caGGSaGaeqiXdqhacaGLOaGaayzkaaGaaGPaVlabgkHiTiaaykW7cq qHPoWvcaaMc8Uaa4NuaiaaykW7caaMc8Uaf8NVdGNbayaadaqadaqa aiaadohacaGGSaGaeqiXdqhacaGLOaGaayzkaaaacaGLOaGaayzkaa aacaGLBbGaayzxaaWaaWbaaSqabeaakiadacVHYaIOliaaygW7kiad acVHYaIOaaGaamizaiaadohaaSqaaiaaicdaaeaacaaIXaaaniabgU IiYdGccaGGUaaaaaa@E210@       (6.1)

Статическая функция Грина для стержня, жестко закрепленного в концевых сечениях, имеет вид:

  G 00 ζ,s = 1 6 ζs 3 Η ζs + 1 6 1+3 s 2 2 s 3 ζ 3 + 1 2 s2 s 2 + s 3 ζ 2 ; G 00 0,s =0, G 10 0,s =0, G 00 1,s =0, G 10 1,s =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaadEeadaWgaaWcbaGaaGimaiaaykW7ca aIWaaabeaakmaabmaabaGaeqOTdONaaiilaiaadohaaiaawIcacaGL PaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI2aaaamaabmaabaGaeq OTdONaeyOeI0Iaam4CaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4m aaaakiabfE5ainaabmaabaGaeqOTdONaeyOeI0Iaam4CaaGaayjkai aawMcaaiabgUcaRmaalaaabaGaaGymaaqaaiaaiAdaaaWaaeWaaeaa cqGHsislcaaIXaGaey4kaSIaaG4maiaadohadaahaaWcbeqaaiaaik daaaGccqGHsislcaaIYaGaam4CamaaCaaaleqabaGaaG4maaaaaOGa ayjkaiaawMcaaiabeA7a6naaCaaaleqabaGaaG4maaaakiabgUcaRm aalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacaWGZbGaeyOeI0Ia aGOmaiaadohadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGZbWaaW baaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaGaeqOTdO3aaWbaaSqa beaacaaIYaaaaOGaai4oaaqaaiaaykW7caaMc8Uaam4ramaaBaaale aacaaIWaGaaGPaVlaaicdaaeqaaOWaaeWaaeaacaaIWaGaaiilaiaa dohaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiilaiaaykW7caaMc8 UaaGPaVlaaykW7caWGhbWaaSbaaSqaaiaaigdacaaMc8UaaGimaaqa baGcdaqadaqaaiaaicdacaGGSaGaam4CaaGaayjkaiaawMcaaiabg2 da9iaaicdacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaadEeadaWg aaWcbaGaaGimaiaaykW7caaIWaaabeaakmaabmaabaGaaGymaiaacY cacaWGZbaacaGLOaGaayzkaaGaeyypa0JaaGimaiaacYcacaaMc8Ua aGPaVlaaykW7caaMc8Uaam4ramaaBaaaleaacaaIXaGaaGPaVlaaic daaeqaaOWaaeWaaeaacaaIXaGaaiilaiaadohaaiaawIcacaGLPaaa cqGH9aqpcaaIWaGaaiilaaaaaa@A67F@

где Η ζs MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHxoasdaqadaqaaiabeA7a6jabgkHiTiaado haaiaawIcacaGLPaaaaaa@37A2@ – функция Хевисайда.

Упрощая выражение (6.1), получаем:

  ξ ζ,τ +2 η V ξ ˙ ζ,τ ΩRξ ζ,τ = = 0 1 G 00 ζ,s 2 η e ξ ˙ s,τ ξ ¨ s,τ ds 0 1 G 02 ζ,s α g NL ξ s,τ +2 η VV f NL ξ ˙ s,τ ΩR ξ s,τ ds ; f NL = ξ ˙ T ξ ˙ 2Ω ξ ˙ T R ξ + Ω 2 ξ T ξ ; g NL = ξ T ξ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaGGabiab=57a4naabmaabaGaeqOTdONaai ilaiabes8a0bGaayjkaiaawMcaaiabgUcaRiaaikdacqaH3oaAdaWg aaWcbaGaamOvaaqabaGcdaqadaqaaiqb=57a4zaacaWaaeWaaeaacq aH2oGEcaGGSaGaeqiXdqhacaGLOaGaayzkaaGaaGPaVlabgkHiTiaa ykW7cqqHPoWvcaaMc8ocbeGaa4NuaiaaykW7caaMc8Uae8NVdG3aae WaaeaacqaH2oGEcaGGSaGaeqiXdqhacaGLOaGaayzkaaaacaGLOaGa ayzkaaGaeyypa0dabaGaeyypa0Zaa8qCaeaacaWGhbWaaSbaaSqaai aaicdacaaMc8UaaGimaaqabaGcdaqadaqaaiabeA7a6jaacYcacaWG ZbaacaGLOaGaayzkaaWaamWaaeaacqGHsislcaaMc8UaaGOmaiaayk W7cqaH3oaAdaWgaaWcbaGaamyzaaqabaGccaaMc8Uaf8NVdGNbaiaa daqadaqaaiaadohacaGGSaGaeqiXdqhacaGLOaGaayzkaaGaeyOeI0 IaaGPaVlqb=57a4zaadaWaaeWaaeaacaWGZbGaaiilaiabes8a0bGa ayjkaiaawMcaaaGaay5waiaaw2faaiaadsgacaWGZbaaleaacaaIWa aabaGaaGymaaqdcqGHRiI8aOGaeyOeI0cabaGaeyOeI0Yaa8qCaeaa caWGhbWaaSbaaSqaaiaaicdacaaMc8UaaGOmaaqabaGcdaqadaqaai abeA7a6jaacYcacaWGZbaacaGLOaGaayzkaaWaamWaaeaacqaHXoqy caaMc8Uaam4zamaaBaaaleaacaWGobGaaGPaVlaadYeaaeqaaOGaaG PaVlqb=57a4zaagaWaaeWaaeaacaWGZbGaaiilaiabes8a0bGaayjk aiaawMcaaiaaykW7cqGHRaWkcaaMc8UaaGOmaiaaykW7cqaH3oaAda WgaaWcbaGaamOvaiaaykW7caWGwbaabeaakiaaykW7caWGMbWaaSba aSqaaiaad6eacaWGmbaabeaakiaaykW7daqadaqaaiqb=57a4zaacy aagaWaaeWaaeaacaWGZbGaaiilaiabes8a0bGaayjkaiaawMcaaiaa ykW7cqGHsislcaaMc8UaeuyQdCLaaGPaVlaa+jfacaaMc8UaaGPaVl qb=57a4zaagaWaaeWaaeaacaWGZbGaaiilaiabes8a0bGaayjkaiaa wMcaaaGaayjkaiaawMcaaaGaay5waiaaw2faaiaadsgacaWGZbaale aacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaai4oaaqaaiaadAgadaWg aaWcbaGaamOtaiaadYeaaeqaaOGaeyypa0ZaaeWaaeaadaqadaqaai qb=57a4zaacyaagaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaMc8Ua aGPaVlaadsfacaaMc8oaaOGaaGPaVlqb=57a4zaacyaagaGaaGPaVl abgkHiTiaaykW7caaIYaGaaGPaVlabfM6axjaaykW7daqadaqaaiqb =57a4zaacyaagaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaMc8UaaG PaVlaadsfaaaGccaaMc8Uaa4NuaiaaykW7caaMc8Uaf8NVdGNbayaa caaMc8Uaey4kaSIaaGPaVlabfM6axnaaCaaaleqabaGaaGOmaaaaki aaykW7daqadaqaaiqb=57a4zaagaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaMc8UaaGPaVlaadsfaaaGccaaMc8Uaf8NVdGNbayaaaiaawI cacaGLPaaacaGG7aaabqai=laadEgadaWgaaWcbaGaamOtaiaadYea aeqaaOGaeyypa0ZaaeWaaeaacuWF+oaEgaGbaaGaayjkaiaawMcaam aaCaaaleqabaGaaGPaVlaaykW7caWGubaaaOGaaGPaVlqb=57a4zaa gaGaaiOlaaaaaa@208A@                (6.2)

Для записи уравнения (6.2) в матричной форме входящие в него интегралы вычислим приближенно по методу трапеций, разбивая вал на m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGTbaaaa@31FC@  одинаковых элементов с длиной h=1/m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGObGaeyypa0ZaaSGbaeaacaaIXaaabaGaam yBaaaaaaa@34C0@  и координатами узлов ζ i = i1 h;i= 1,m+1 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH2oGEdaWgaaWcbaGaamyAaaqabaGccaaMc8 Uaeyypa0JaaGPaVpaabmaabaGaamyAaiaaykW7cqGHsislcaaMc8Ua aGymaaGaayjkaiaawMcaaiaaykW7caWGObGaaGPaVlaacUdacaaMc8 UaaGPaVlaadMgacaaMc8Uaeyypa0JaaGPaVpaanaaabaGaaGymaiaa cYcacaWGTbGaaGPaVlabgUcaRiaaykW7caaIXaaaaaaa@533F@ . Значения интеграла в каждом j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGQbaaaa@31F9@  -ом узле принимается равным

0 1 G ζ j ,s x τ,s ds h 2 G j 1 x 1 + G j m+1 x m+1 +h k=2 k=m G j k x k , G j k G ζ j , s k , x k x τ, s k ,j,k= 1,m+1 ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaamaapehabaGaam4ramaabmaabaGaeqOTdO 3aaSbaaSqaaiaadQgaaeqaaOGaaiilaiaadohaaiaawIcacaGLPaaa caaMc8EefqvATv2CG4uz3bIuV1wyUbaceeGaa8hEamaabmaabaGaeq iXdqNaaiilaiaaykW7caWGZbaacaGLOaGaayzkaaaaleaacaaIWaaa baGaaGymaaqdcqGHRiI8aOGaaGPaVlaadsgacaaMc8Uaam4Caiaayk W7cqGHijYUcaaMc8+aaSaaaeaacaWGObaabaGaaGOmaaaadaWadaqa aiaadEeadaWgaaWcbaWaaeWaaeaacaWGQbaacaGLOaGaayzkaaGaaG PaVpaabmaabaGaaGymaaGaayjkaiaawMcaaaqabaGccaaMc8Uaa8hE amaaBaaaleaadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaOGaaG PaVlabgUcaRiaaykW7caWGhbWaaSbaaSqaamaabmaabaGaamOAaaGa ayjkaiaawMcaaiaaykW7daqadaqaaiaad2gacaaMc8Uaey4kaSIaaG PaVlaaigdaaiaawIcacaGLPaaaaeqaaOGaaGPaVlaa=HhadaWgaaWc baWaaeWaaeaacaWGTbGaaGPaVlabgUcaRiaaykW7caaIXaaacaGLOa GaayzkaaaabeaaaOGaay5waiaaw2faaiaaykW7cqGHRaWkcaaMc8Ua amiAaiaaykW7daaeWbqaaiaadEeadaWgaaWcbaWaaeWaaeaacaWGQb aacaGLOaGaayzkaaGaaGPaVpaabmaabaGaam4AaaGaayjkaiaawMca aaqabaGccaaMc8Uaa8hEamaaBaaaleaadaqadaqaaiaadUgaaiaawI cacaGLPaaaaeqaaaqaaiaadUgacaaMc8Uaeyypa0JaaGPaVlaaikda aeaacaWGRbGaaGPaVlabg2da9iaaykW7caWGTbaaniabggHiLdGcca GGSaaabaGaam4ramaaBaaaleaadaqadaqaaiaadQgaaiaawIcacaGL PaaacaaMc8+aaeWaaeaacaWGRbaacaGLOaGaayzkaaaabeaakiaayk W7cqWIqjIqcaaMc8Uaam4ramaabmaabaGaeqOTdO3aaSbaaSqaaiaa dQgaaeqaaOGaaiilaiaadohadaWgaaWcbaGaam4AaaqabaaakiaawI cacaGLPaaacaGGSaGaaGPaVlaaykW7caWF4bWaaSbaaSqaamaabmaa baGaam4AaaGaayjkaiaawMcaaaqabaGccaaMc8UaeSiuIiKaaGPaVl aa=Hhadaqadaqaaiabes8a0jaacYcacaaMc8Uaam4CamaaBaaaleaa caWGRbaabeaaaOGaayjkaiaawMcaaiaacYcacaaMc8UaaGPaVlaadQ gacaGGSaGaaGPaVlaadUgacaaMc8Uaeyypa0JaaGPaVpaanaaabaGa aGymaiaacYcacaaMc8UaamyBaiaaykW7cqGHRaWkcaaMc8UaaGymaa aacaaMc8UaaiOlaaaaaa@DF26@

Для того чтобы система не была переопределена, краевые узлы исключаются из рассмотрения, поскольку перемещения в них заранее известны – они нулевые. Таким образом, размерность задачи станет равной 2 m1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaaIYaWaaeWaaeaacaWGTbGaeyOeI0IaaGymaa GaayjkaiaawMcaaaaa@35E9@ .

Введем матрицу функций Грина G h kl MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFhbWaaW baaSqabeaacaWGObaaaOWaaSbaaSqaaiaadUgacaaMc8UaamiBaaqa baaaaa@3C1A@ , вектор узловых перемещений x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWH4baaaa@320B@  единичные матрицы E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFfbaaaa@375C@  и I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFjbaaaa@3760@  размерностью R 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGsbWaaWbaaSqabeaacaaIYaaaaaaa@32CA@  и R m1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGsbWaaWbaaSqabeaacaWGTbGaeyOeI0IaaG ymaaaaaaa@34A8@  соответственно:

  G h kl m1 × m1 =h G kl ζ 2 , s 2 G kl ζ 2 , s 3 G kl ζ 2 , s m G kl ζ 3 , s 2 G kl ζ m , s 2 G kl ζ m , s m , x 2 m1 ×1 = ξ ζ 2 ,τ ξ ζ 3 ,τ ξ ζ m ,τ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaamaazaaabaqefqvATv2CG4uz3bIuV1wyUb aceeGaa83ramaaCaaaleqabaGaamiAaaaakmaaBaaaleaacaWGRbGa aGPaVlaadYgaaeqaaaqaamaabmaabaGaamyBaiabgkHiTiaaigdaai aawIcacaGLPaaacqGHxdaTdaqadaqaaiaad2gacqGHsislcaaIXaaa caGLOaGaayzkaaaakiaawYa7aiabg2da9iaadIgadaWadaqaauaabe qaeqaaaaaabaGaam4ramaaBaaaleaacaWGRbGaaGPaVlaadYgaaeqa aOWaaeWaaeaacqaH2oGEdaWgaaWcbaGaaGOmaaqabaGccaGGSaGaam 4CamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaqaaiaadEea daWgaaWcbaGaam4AaiaaykW7caWGSbaabeaakmaabmaabaGaeqOTdO 3aaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadohadaWgaaWcbaGaaG4m aaqabaaakiaawIcacaGLPaaaaeaacqWIVlctaeaacaWGhbWaaSbaaS qaaiaadUgacaaMc8UaamiBaaqabaGcdaqadaqaaiabeA7a6naaBaaa leaacaaIYaaabeaakiaacYcacaWGZbWaaSbaaSqaaiaad2gaaeqaaa GccaGLOaGaayzkaaaabaGaam4ramaaBaaaleaacaWGRbGaaGPaVlaa dYgaaeqaaOWaaeWaaeaacqaH2oGEdaWgaaWcbaGaaG4maaqabaGcca GGSaGaam4CamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaqa aiablgVipbqaaiablgVipbqaaiabl6Uinbqaaiabl6Uinbqaaiablg VipbqaaiablgVipbqaaiabl6UinbqaaiaadEeadaWgaaWcbaGaam4A aiaaykW7caWGSbaabeaakmaabmaabaGaeqOTdO3aaSbaaSqaaiaad2 gaaeqaaOGaaiilaiaadohadaWgaaWcbaGaaGOmaaqabaaakiaawIca caGLPaaaaeaacqWIVlctaeaacqWIVlctaeaacaWGhbWaaSbaaSqaai aadUgacaaMc8UaamiBaaqabaGcdaqadaqaaiabeA7a6naaBaaaleaa caWGTbaabeaakiaacYcacaWGZbWaaSbaaSqaaiaad2gaaeqaaaGcca GLOaGaayzkaaaaaaGaay5waiaaw2faaiaacYcaaeaadaWfqaqaaiaa hIhaaSqaaiaaikdadaqadaqaaiaad2gacqGHsislcaaIXaaacaGLOa GaayzkaaGaey41aqRaaGymaaqabaqeduuDJXwAKbYu51MyVXgaiuqa kiab+1da9maacmaabaqbaeqabqqaaaaabaGaeqOVdG3aaeWaaeaacq aH2oGEdaWgaaWcbaGaaGOmaaqabaGccaGGSaGaeqiXdqhacaGLOaGa ayzkaaaabaGaeqOVdG3aaeWaaeaacqaH2oGEdaWgaaWcbaGaaG4maa qabaGccaGGSaGaeqiXdqhacaGLOaGaayzkaaaabaGaeSO7I0eabaGa eqOVdG3aaeWaaeaacqaH2oGEdaWgaaWcbaGaamyBaaqabaGccaGGSa GaeqiXdqhacaGLOaGaayzkaaaaaaGaay5Eaiaaw2haaiaaykW7caGG Uaaaaaa@D39A@

Квадратные матрицы G h kl MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8FefqvATv2CG4uz3bIuV1wyUbaceeGaa83ram aaCaaaleqabaGaamiAaaaakmaaBaaaleaacaWGRbGaaGPaVlaadYga aeqaaaaa@3D3D@ , I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8FefqvATv2CG4uz3bIuV1wyUbaceeGaa8xsaa aa@3883@ , D MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8FefqvATv2CG4uz3bIuV1wyUbaceeGaa8hraa aa@387E@  имеют размерность, равную m1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8=aaeWaaeaacaWGTbGaeyOeI0IaaGymaaGaay jkaiaawMcaaaaa@3650@ , т.е. количеству узлов. Поскольку в каждом узле мы имеем две равнозначные степени свободы – перемещения вдоль осей x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8VaamiEaaaa@332A@  и y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8VaamyEaaaa@332B@  для матричной записи, каж­дая компонента этих матриц должна быть умножена на единичную матрицу E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8FefqvATv2CG4uz3bIuV1wyUbaceeGaa8xraa aa@387F@ . Для этой операции воспользуемся произведением Кронекера, которое обозначим как AB MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeabG8FefqvATv2CG4uz3bIuV1wyUbaceeGaa8xqai abgEPielaa=jeaaaa@3B47@ .

В итоге уравнение в матричной форме принимает следующий вид:

  A 2 x ¨ + A 1 x ˙ + A 0 x=F, A 2 = G h 00 E, A 1 =2 η V IE +2 η e G h 00 E , A 0 =I E2 η V ΩR , F=2 η VV G h 02 f E DE x ˙ +Ω DR x α G h 02 g E DE x . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaaxMaaruavP1wzZbItLDhis9wBH5gaiq qacaWFbbWaaSbaaSqaaiaaikdaaeqaaOGaaGPaVlqa=HhagaWaaiab gUcaRiaa=feadaWgaaWcbaGaaGymaaqabaGccaaMc8Uab8hEayaaca Gaey4kaSIaaGjbVlaa=feadaWgaaWcbaGaaGimaaqabaGccaaMc8Ua a8hEaiabg2da9iaa=zeacaGGSaaabaGaa8xqamaaBaaaleaacaaIYa aabeaakiabg2da9iaa=DeadaahaaWcbeqaaiaadIgaaaGcdaWgaaWc baGaaGimaiaaykW7caaIWaaabeaakiabgEPielaa=veacaGGSaaaba Gaa8xqamaaBaaaleaacaaIXaaabeaakiabg2da9iaaikdacaaMc8Ua eq4TdG2aaSbaaSqaaiaadAfaaeqaaOGaaGPaVpaabmaabaGaa8xsai abgEPielaa=veaaiaawIcacaGLPaaacqGHRaWkcaaIYaGaaGPaVlab eE7aOnaaBaaaleaacaWGLbaabeaakmaabmaabaGaa83ramaaCaaale qabaGaamiAaaaakmaaBaaaleaacaaIWaGaaGPaVlaaicdaaeqaaOGa ey4LIqSaa8xraaGaayjkaiaawMcaaiaacYcaaeaacaWFbbWaaSbaaS qaaiaaicdaaeqaaOGaeyypa0JaaCysaiabgEPiepaabmaabaGaa8xr aiabgkHiTiaaikdacaaMc8Uaeq4TdG2aaSbaaSqaaiaadAfaaeqaaO GaaGPaVlabfM6axjaaykW7caWFsbaacaGLOaGaayzkaaGaaiilaaqa aiaa=zeacqGH9aqpcaaIYaGaeq4TdG2aaSbaaSqaaiaadAfacaWGwb aabeaakiaaykW7daWadaqaamaabmaabaGaa83ramaaCaaaleqabaGa amiAaaaakmaaBaaaleaacaaIWaGaaGPaVlaaikdaaeqaaaGccaGLOa GaayzkaaWaaSbaaSqaaiaadAgaaeqaaOGaey4LIqSaa8xraaGaay5w aiaaw2faamaadmaabaGaeyOeI0YaaeWaaeaacaWFebGaey4LIqSaa8 xraaGaayjkaiaawMcaaiqa=HhagaGaaeXafv3ySLgzGmvETj2BSbac faGae43kaSIaeuyQdC1aaeWaaeaacaWFebGaey4LIqSaa8NuaaGaay jkaiaawMcaaiaa=HhaaiaawUfacaGLDbaacqGHsislaeaacqGHsisl caaMc8UaeqySde2aamWaaeaadaqadaqaaiaa=DeadaahaaWcbeqaai aadIgaaaGcdaWgaaWcbaGaaGimaiaaykW7caaIYaaabeaaaOGaayjk aiaawMcaamaaBaaaleaacaWGNbaabeaakiabgEPielaa=veaaiaawU facaGLDbaadaWadaqaamaabmaabaGaa8hraiabgEPielaa=veaaiaa wIcacaGLPaaacaWF4baacaGLBbGaayzxaaGaaiOlaaaaaa@CCC2@                                    (6.3)

где G h 02 f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaerbuLwBLnhiov2DGi1BTfMBaGabbi aa=DeadaahaaWcbeqaaiaadIgaaaGcdaWgaaWcbaGaaGimaiaaykW7 caaIYaaabeaaaOGaayjkaiaawMcaamaaBaaaleaacaWGMbaabeaaaa a@3E59@  и G h 02 g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaerbuLwBLnhiov2DGi1BTfMBaGabbi aa=DeadaahaaWcbeqaaiaadIgaaaGcdaWgaaWcbaGaaGimaiaaykW7 caaIYaaabeaaaOGaayjkaiaawMcaamaaBaaaleaacaWGNbaabeaaaa a@3E5A@ – матрицы, полученные умножением столбцов матрицы Грина G h 02 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFhbWaaW baaSqabeaacaWGObaaaOWaaSbaaSqaaiaaicdacaaMc8UaaGOmaaqa baaaaa@3BAF@  на соответствующие значения f NL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGMbWaaSbaaSqaaiaad6eacaWGmbaabeaaaa a@33C5@  и g NL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGNbWaaSbaaSqaaiaad6eacaWGmbaabeaaaa a@33C6@ .

Полная нелинейная система уравнений (6.3) зависит от шести параметров m, η e , η V ,Ω, η VV ,α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaGadaqaaiaad2gacaGGSaGaaGPaVlaaykW7cq aH3oaAdaWgaaWcbaGaamyzaaqabaGccaGGSaGaaGPaVlaaykW7cqaH 3oaAdaWgaaWcbaGaamOvaaqabaGccaGGSaGaaGPaVlaaykW7cqqHPo WvcaGGSaGaaGPaVlaaykW7cqaH3oaAdaWgaaWcbaGaamOvaiaadAfa aeqaaOGaaiilaiaaykW7caaMc8UaeqySdegacaGL7bGaayzFaaaaaa@5359@ , при этом линейная часть – от четырех параметров m, η e , η V ,Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaGadaqaaiaad2gacaGGSaGaaGPaVlabeE7aOn aaBaaaleaacaWGLbaabeaakiaacYcacaaMc8Uaeq4TdG2aaSbaaSqa aiaadAfaaeqaaOGaaiilaiabfM6axbGaay5Eaiaaw2haaaaa@406A@ .

Для численного решения сведем уравнение (6.3) к форме Коши:

Z ˙ =AZ+f; Z= x x ˙ ,A= 0 E A 2 1 A 0 A 2 1 A 1 ,f= 0 A 2 1 F . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7ruavP1wzZbItLDhis9wBH5gaiqqace WFAbGbaiaacaaMc8Uaeyypa0JaaGPaVlaa=feacaaMc8Uaa8Nwaiaa ykW7cqGHRaWkcaaMc8Uaa8NzaiaacUdaaeaacaWFAbGaeyypa0Zaai WaaeaafaqabeGabaaabaGaa8hEaaqaaiqa=HhagaGaaaaaaiaawUha caGL9baacaGGSaGaaGPaVlaaykW7caWFbbGaaGPaVlabg2da9iaayk W7caaMc8+aamWaaeaafaqabeGacaaabaGaaCimaaqaaiaa=veaaeaa cqGHsislcaWFbbWaaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabeaacq GHsislcaaIXaaaaOGaaGPaVlaa=feadaWgaaWcbaGaaGimaaqabaaa keaacqGHsislcaWFbbWaaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabe aacqGHsislcaaIXaaaaOGaaGPaVlaa=feadaWgaaWcbaGaaGymaaqa baaaaaGccaGLBbGaayzxaaGaaiilaiaaykW7caaMc8Uaa8Nzaiabg2 da9maacmaabaqbaeqabiqaaaqaaiaahcdaaeaacaWFbbWaaSbaaSqa aiaaikdaaeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGPaVl aa=zeaaaaacaGL7bGaayzFaaGaaiOlaaaaaa@C284@

7. Определение критической скорости. Линейная динамическая система описывается следующим уравнением:

  A 2 x ¨ + A 1 x ˙ + A 0 x=0,x R 2 m1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaruavP1wzZbItLDhis9wBH5gaiqqacaWFbbWaaS baaSqaaiaaikdaaeqaaOGaaGPaVlqa=HhagaWaaiaaykW7cqGHRaWk caaMc8Uaa8xqamaaBaaaleaacaaIXaaabeaakiaaykW7ceWF4bGbai aacaaMc8Uaey4kaSIaaGPaVlaa=feadaWgaaWcbaGaaGimaaqabaGc caaMc8Uaa8hEaiaaykW7cqGH9aqpcaaMc8UaaCimaiaacYcacaaMc8 UaaGPaVlaa=HhacaaMc8UaeyicI4SaaGPaVlaadkfadaahaaWcbeqa aiaaikdadaqadaqaaiaad2gacqGHsislcaaIXaaacaGLOaGaayzkaa aaaaaa@5F4F@          (7.1)

Собственные числа λ k ,k= 1,2,,4 m1 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaGGSa GaaGPaVlaaykW7caaMc8Uaam4AaiaaykW7cqGH9aqpcaaMc8+aa0aa aeaacaaIXaGaaiilaiaaykW7caaIYaGaaiilaiaaykW7cqWIMaYsca GGSaGaaGPaVlaaisdacaaMc8+aaeWaaeaacaWGTbGaeyOeI0IaaGym aaGaayjkaiaawMcaaaaaaaa@4E08@  системы (7.1) являются корнями характеристического уравнения

системы стремятся к нулю. При закритических скоростях вращения любые начальные возмущения приводят к неограниченному росту амплитуд колебаний вала.

9. Поведение нелинейной динамической системы. Рассмотрим влияние каж­дой из нелинейностей η VV ,α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiabeE7aOnaaBaaaleaacaWGwbGaam OvaaqabaGccaGGSaGaaGPaVlabeg7aHbGaayjkaiaawMcaaaaa@3A05@  модели внутреннего демпфирования Кельвина–Фойхта на амплитуды колебаний вала при его вращении с закритической скоростью Ω=33> Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvcqGH9aqpcaaIZaGaaG4maiabg6da+i abfM6axnaaBaaaleaacaqGJbGaaeOCaiaabMgacaqG0baabeaaaaa@3B98@ . В качестве начального возмущения примем перемещения шестого (срединного) узла ξ x ζ 6 ,0 = ξ y ζ 6 ,0 =0.2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH+oaEdaWgaaWcbaGaamiEaaqabaGcdaqada qaaiabeA7a6naaBaaaleaacaaI2aaabeaakiaacYcacaaIWaaacaGL OaGaayzkaaGaeyypa0JaeqOVdG3aaSbaaSqaaiaadMhaaeqaaOWaae WaaeaacqaH2oGEdaWgaaWcbaGaaGOnaaqabaGccaGGSaGaaGimaaGa ayjkaiaawMcaaiabg2da9iaaicdacaGGUaGaaGOmaaaa@4677@ . На рис. 3,а показаны перемещения шестого (срединного) узла при значении коэффициента η VV = 10 5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaiaadAfaaeqaaO Gaeyypa0JaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiwdaaaaa aa@38F6@  и нулевом коэффициенте нелинейности упругих сил ( α=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHXoqycqGH9aqpcaaIWaaaaa@3469@  ). В этом случае с увеличением числа оборотов вала Ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHDoGtaaa@3283@  амплитуды колебаний неограниченно возрастают, стремясь в бесконечность. При учете обеих нелинейностей ( η VV = 10 5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaiaadAfaaeqaaO Gaeyypa0JaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiwdaaaaa aa@38F6@ , α=0.015 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaicdaca aIXaGaaGynaaaa@374F@  ) амплитуда колебаний сначала возрастает и, затем, после, примерно, двадцати оборотов амплитуда устанавливается на постоянное значение, достигнув пятикратного увеличения по сравнению с начальным возмущением (рис. 3,b). Наличие только нелинейности в силах упругости, в данном случае – кубической ( α=0.015 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaicdaca aIXaGaaGynaaaa@374F@ , η VV =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaiaadAfaaeqaaO Gaeyypa0JaaGimaaaa@3662@  ), приводит к ограниченным устойчивым периодическим решениям (рис. 3,c).

 

Рис. 3. Перемещения срединного узла при закритической скорости при m=12, ηe=0.02, ηV=104: (a) ηVV=105, α=0; (b) ηVV=105, α=0.015; (c) ηVV=0, α=0.015.

 

10. Явление гистерезиса угловой скорости вращения при малом значении времени релаксации неупругих деформаций η V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaiiqacqWF3oaAdaWgaaWcbaqefqvATv2CG4uz3b IuV1wyUbacemGaa4Nvaaqabaaaaa@394C@ . Как было показано в предыдущем пункте, наличие кубической нелинейности в силах упругости приводит к появлению дополнительного нетривиального устойчивого решения в закритической области. На рис. 4 приведена бифуркационная диаграмма значений установившихся амплитуд перемещений центрального узла ξ x ζ 6 ,τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH+oaEdaWgaaWcbaGaamiEaaqabaGcdaqada qaaiabeA7a6naaBaaaleaacaaI2aaabeaakiaacYcacqaHepaDaiaa wIcacaGLPaaaaaa@3AB1@  от угловой скорости Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvaaa@3298@ , которая получена методом установления при следующих значениях параметров: m=12 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGTbGaeyypa0JaaGymaiaaikdaaaa@3479@ , η e =0.02 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamyzaaqabaGccqGH9a qpcaaIWaGaaiOlaiaaicdacaaIYaaaaa@37BE@ , η V = 10 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaGccqGH9a qpcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGinaaaaaaa@381A@ , η VV = 10 5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaiaadAfaaeqaaO Gaeyypa0JaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiwdaaaaa aa@38F6@ , α=0.015 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHXoqycqGH9aqpcaaIWaGaaiOlaiaaicdaca aIXaGaaGynaaaa@374F@ . Видно, что в докритической области, в диапазоне скоростей Ω <Ω< Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaakiabgY da8iabfM6axjabgYda8iabfM6axnaaBaaaleaacaqGJbGaaeOCaiaa bMgacaqG0baabeaaaaa@3CC9@  существует два устойчивых режима: устойчивое нулевое решение и устойчивое периодическое решение. Эти решения имеют разные притягивающие множества. Можно заключить, что наблюдается субкритическая бифуркация (точка B на рис. 4), неустойчивая ветвь показана схематично красной штриховой линией. Точка А является предельной точкой перехода с верхней устойчивой ветви на нижнюю устойчивую. При угловой скорости выше критической Ω> Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvcqGH+aGpcqqHPoWvdaWgaaWcbaGaae 4yaiaabkhacaqGPbGaaeiDaaqabaaaaa@3918@  существует только одно устойчивое периодическое решение, продолжающее верхнюю ветвь на интервале Ω <Ω< Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaakiabgY da8iabfM6axjabgYda8iabfM6axnaaBaaaleaacaqGJbGaaeOCaiaa bMgacaqG0baabeaaaaa@3CC9@ .

 

Рис. 4. Бифуркационная диаграмма вдоль верхней периодической ветви, А – предельная точка, B – субкритическая бифуркация ( m=12, ηe=0.02, ηV=104, ηVV=105, α=0.015).

 

11. Характер прецессии на устойчивой ветви периодических решений. Для определения характера прецессии используется понятие о коэффициенте мгновенной прецессии Λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHBoataaa@327F@ , который определяется через скорость изменения полярного угла срединного узла α τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHXoqydaqadaqaaiabes8a0bGaayjkaiaawM caaaaa@35F7@ , показанного на рис. 5:

α ˙ τ = ξ ˙ y ζ 6 ,τ ξ x ζ 6 ,τ ξ ˙ x ζ 6 ,τ ξ y ζ 6 ,τ ξ x 2 ζ 6 ,τ + ξ y 2 ζ 6 ,τ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaHXoqygaGaamaabmaabaGaeqiXdqhacaGLOa GaayzkaaGaaGPaVlabg2da9iaaykW7daWcaaqaaiqbe67a4zaacaWa aSbaaSqaaiaadMhacaaMc8oabeaakmaabmaabaGaeqOTdO3aaSbaaS qaaiaaiAdaaeqaaOGaaiilaiabes8a0bGaayjkaiaawMcaaiabe67a 4naaBaaaleaacaWG4baabeaakmaabmaabaGaeqOTdO3aaSbaaSqaai aaiAdaaeqaaOGaaiilaiabes8a0bGaayjkaiaawMcaaiaaykW7cqGH sislcaaMc8UafqOVdGNbaiaadaWgaaWcbaGaamiEaaqabaGcdaqada qaaiabeA7a6naaBaaaleaacaaI2aaabeaakiaacYcacqaHepaDaiaa wIcacaGLPaaacaaMc8UaeqOVdG3aaSbaaSqaaiaadMhaaeqaaOWaae WaaeaacqaH2oGEdaWgaaWcbaGaaGOnaaqabaGccaGGSaGaeqiXdqha caGLOaGaayzkaaaabaGaeqOVdG3aaSbaaSqaaiaadIhaaeqaaOWaaW baaSqabeaacaaIYaaaaOWaaeWaaeaacqaH2oGEdaWgaaWcbaGaaGOn aaqabaGccaGGSaGaeqiXdqhacaGLOaGaayzkaaGaaGPaVlabgUcaRi aaykW7cqaH+oaEdaWgaaWcbaGaamyEaaqabaGcdaahaaWcbeqaaiaa ikdaaaGcdaqadaqaaiabeA7a6naaBaaaleaacaaI2aaabeaakiaacY cacqaHepaDaiaawIcacaGLPaaaaaaaaa@8122@ .

 

 

Рис. 5. Прецессия сечения стержня, соответствующего срединному узлу.

 

Тогда коэффициент мгновенной прецессии Λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHBoataaa@327F@  и его среднее значение Λ ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuqHBoatgaqeaaaa@3297@  определяются следующим образом:

Λ= α ˙ Ω , Λ ¯ = 1 τ 2 τ 1 τ 1 τ 2 Λ s ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHBoatcaaMc8Uaeyypa0JaaGPaVpaalaaaba GafqySdeMbaiaaaeaacqqHPoWvaaGaaiilaiaaykW7caaMc8UaaGPa VlqbfU5amzaaraGaaGPaVlabg2da9iaaykW7daWcaaqaaiaaigdaae aacqaHepaDdaWgaaWcbaGaaGOmaaqabaGccaaMc8UaeyOeI0IaaGPa Vlabes8a0naaBaaaleaacaaIXaaabeaaaaGccaaMc8+aa8qCaeaacq qHBoatdaqadaqaaiaadohaaiaawIcacaGLPaaacaaMc8UaaGPaVlaa dsgacaWGZbaaleaacqaHepaDdaWgaaadbaGaaGymaaqabaaaleaacq aHepaDdaWgaaadbaGaaGOmaaqabaaaniabgUIiYdaaaa@615D@ .

Можно различить следующие случаи: Λ ¯ >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuqHBoatgaqeaiaaykW7cqGH+aGpqqa6daaaaa GuLrgapeGaaGPaV=aacaaIWaaaaa@39A8@ – прямая прецессия, Λ ¯ <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuqHBoatgaqeaiaaykW7cqGH8aapcaaMc8UaaG imaaaa@376B@ – обратная прецессия, Λ ¯ =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuqHBoatgaqeaiabg2da9iaaigdaaaa@3458@  и Λ ¯ =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuqHBoatgaqeaiabg2da9iabgkHiTiaaigdaaa a@3545@ – прямая и обратная синхронная прецессии соответственно.

На рис. 6 показано распределение среднего коэффициента прецессии Λ ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuqHBoatgaqeaaaa@3297@  вдоль верхней устойчивой периодической ветви, в интервале Ω> Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvcaaMc8UaeyOpa4JaaGPaVlabfM6axn aaBaaaleaacqGHsislaeqaaaaa@395D@  (см. рис. 4) реализуется прямая несинхронная прецессия 0< Λ ¯ <1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaaIWaGaaGPaVlabgYda8iaaykW7cuqHBoatga qeaiaaykW7cqGH8aapcaaMc8UaaGymaaaa@3C40@ , причем скорость вращения вала несколько больше скорости прецессии.

 

Рис. 6. Распределение среднего значения коэффициента прецессия вдоль верхней устойчивой ветви ( m=12, ηe=0.02, ηV=104, ηVV=105, α=0.015).

 

На рис. 7 показаны характерные для верхней ветви траектории узлов коллокации с формой изогнутой оси.

 

Рис. 7. Траектории узлов коллокации при установившемся движении (черные линии) и формы изо-гнутой оси (красные линии) ( m=12, ηe=0.02, ηV=104, ηVV=105, α=0.015, Ω=32).

 

12. Характер прецессии на устойчивой ветви периодических решений. На рис. 8а показаны значения Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaaaaa@33B1@  и Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaae4yaiaabkhacaqGPb GaaeiDaaqabaaaaa@3682@  в зависимости от коэффициента внутреннего линейного демпфирования η V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaaaaa@33BD@ , из которого видно, что при малых значениях η V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaaaaa@33BD@  в области Ω <Ω< Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaakiabgY da8iabfM6axjabgYda8iabfM6axnaaBaaaleaacaqGJbGaaeOCaiaa bMgacaqG0baabeaaaaa@3CC9@  присутствует множественность решений (рис. 8,c), что соответствует субкритической бифуркации. При увеличении коэффициента η V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaaaaa@33BD@  значение Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaaaaa@33B1@  постепенно сливается с Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaae4yaiaabkhacaqGPb GaaeiDaaqabaaaaa@3682@ . При некотором значении η V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaaaaa@33BD@  складка исчезает: Ω= Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvcqGH9aqpcqqHPoWvdaWgaaWcbaGaae 4yaiaabkhacaqGPbGaaeiDaaqabaaaaa@3916@ – суперкритическая бифуркация (рис. 8,b). Появляется мягкое развитие амплитуд устойчивых периодических (автоколебательных) движений.

 

Рис. 8. Зависимость Ω и Ωcrit от коэффициента ηV (а); распределение амплитуд перемещений срединного узла при субкритической (b) и суперкритической (c) бифуркациях ( m=12, ηe=0.02, ηVV=105, α=0.015).

 

13. Заключение. В работе показано влияние кубического члена в модели Кельвина–Фойхта для внутреннего демпфирования и кубического члена в законе упругости на динамику вала в докритической и закритической областях скоростей вращения. Без учета нелинейных членов в законе упругости в закритической области прямолинейная форма вала всегда неустойчива (при Ω> Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvcaaMc8UaeyOpa4JaaGPaVlabfM6axn aaBaaaleaacaqGJbGaaeOCaiaabMgacaqG0baabeaaaaa@3C2E@ : ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqbdaqaaeXafv3ySLgzGmvETj2BSbaceeGae8 NVdGhacaGLjWUaayPcSdGaaGPaVlabgkziUkaaykW7cqGHEisPaaa@4170@  ). Наличие кубической нелинейности в упругой составляю­щей в деформациях приводит к появлению дополнительной верхней ветви периодических решений в докритической области в диапазоне скоростей Ω ; Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWadaqaaiabfM6axnaaBaaaleaacqGHsislae qaaOGaai4oaiaaykW7caaMc8UaeuyQdC1aaSbaaSqaaiaabogacaqG YbGaaeyAaiaabshaaeqaaaGccaGLBbGaayzxaaaaaa@3F04@ , которая продолжается в закритической области. В зависимости от значений времени релаксации неупругих деформаций η V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaaaaa@33BD@  в материале вала возможны два различных сценария бифуркаций скорости вращения вала. При относительно большом времени релаксации (здесь η V 0.0004 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaGccqGHLj YScaaIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaisdaaaa@39E5@ , рис. 8а) наб­людается сверхкритическая бифуркация прямолинейного вращения вала при критической скорости вращения Ω= Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvcqGH9aqpcqqHPoWvdaWgaaWcbaGaae 4yaiaabkhacaqGPbGaaeiDaaqabaaaaa@3916@ . При увеличении скорости вращения происходит мягкое возбуждение асинхронного прецессирования оси вала (рис. 8б) – 0< Λ ¯ <1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaaIWaGaeyipaWJafu4MdWKbaebacqGH8aapca aIXaaaaa@3614@ . При уменьшении времени релаксации (здесь для η V <0.0004 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH3oaAdaWgaaWcbaGaamOvaaqabaGccqGH8a apcaaIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaisdaaaa@3923@  рис. 8а) появляется новая точка бифуркации скорости вращения вала Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaaaaa@33B1@  при продолжающемся увеличении критической скорости Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaae4yaiaabkhacaqGPb GaaeiDaaqabaaaaa@3682@ . В диа­пазоне Ω ; Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWadaqaaiabfM6axnaaBaaaleaacqGHsislae qaaOGaai4oaiaaykW7caaMc8UaeuyQdC1aaSbaaSqaaiaabogacaqG YbGaaeyAaiaabshaaeqaaaGccaGLBbGaayzxaaaaaa@3F04@  существует дополнительная ветвь неустойчивых периодических движений (рис. 8,c), соединяющая точки Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaaaaa@33B1@  и Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaae4yaiaabkhacaqGPb GaaeiDaaqabaaaaa@3682@ . Нижняя точка Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaeyOeI0cabeaaaaa@33B1@  является бифуркацией типа предельной точкой слияния устойчивого и неустойчивого периодического движения и субкритической бифуркации в точке Ω crit MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHPoWvdaWgaaWcbaGaae4yaiaabkhacaqGPb GaaeiDaaqabaaaaa@3682@ , при достижении которой происходит жесткое возбуждение прецессионного движения. Т.е. возникает область гистерезисного поведения вала: при адиабатическом изменении скорости вращения вала: при движении “вперед–назад” динамическая система проходит через различные состояния.

Исследование выполнено за счет гранта РНФ (проект № 24-19-00333, https://rscf.ru/project/24-19-00333/).


1 Векторы как инвариантные объекты обозначаются прямым жирным шрифтом с верхней стрелкой. Компоненты векторов в подвижном базисе помечены верхней тильдой. Соответствующие матричные объекты пишутся без верхней стрелки.

×

作者简介

А. Azarov

Bauman Moscow State Technical University

编辑信件的主要联系方式.
Email: 13azarov.ru@gmail.com
俄罗斯联邦, Moscow

A. Gouskov

Bauman Moscow State Technical University; Mechanical Engineering Research Institute of RAN

Email: gouskov_am@mail.ru
俄罗斯联邦, Moscow; Moscow

G. Panovko

Mechanical Engineering Research Institute of RAN

Email: gpanovko@yandex.ru
俄罗斯联邦, Moscow

参考

  1. Bolotin V. Nonconservative problems of the theory of elastic stability. M.: Nauka, 1961 (in Russian).
  2. Ding Q., Cooper J., Leung A. Hopf bifurcation analysis of a rotor/seal system // J. Sound Vibr. 2002. V. 252. № 5. P. 817–833. https://doi.org/10.1006/jsvi.2001.3711
  3. Karpenko E.V., Pavlovskaia E.E. Bifurcation analysis of a preloaded Jeffcott rotor // Chaos, Sol. Fract. 2003. V. 15. № 2. P. 407–416. https://doi.org/10.1016/S0960-0779(02)00107-8
  4. Ehrich F. Observations of subcritical, superharmonic and chaotic response in rotor dynamics // Vibr. Acous. 1992. № 114. P. 93–114. https://doi.org/10.1115/1.2930240
  5. Kimpbal A. Internal friction as a cause of shaft whirling // Phil. Mag. 1925. V. 49. P. 724–727.
  6. Newkirk B.L. Saft wipping // General Electric Rev. 1924. V. 27. № 3. P. 169–178.
  7. Genta G. et al. Vibration dynamics and control. NY: Springer, 2009.
  8. Li Y. et al. Dynamic modelling and vibration analysis of a bolted spigot joint structure considering mating interface friction: simulation and experiment // Nonlinear Dynamics. 2024. P. 1–24. https://doi.org/10.1007/s11071-024-09365-6
  9. Schwarz U. Continuum mechanics / Heilenberg University, 2023. URL: https://www.thphys.uni-heidelberg.de/~biophys/PDF/Skripte/Script_Continuum_Mechanics.pdf (date of application 01.04.2024).
  10. Lewandowski R., Chorążyczewski B. Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers // Computers & Structures. 2010. V. 88. № 1–2. P. 1–17.
  11. Hetzler H., Boy F. Internal dissipation and self-excited ocillations in rotating machinery: internal friction vs. internal viscous damping // International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC 2017). 2017.
  12. Azarov A.A., Gouscov A.M., Panovko G.Y. Dynamics of a flexible disk rotor under a point contact with discrete viscoelastic oscillation limiters // J. Mach. Manufac. Reliability. 2023. № 1. P. 26–37. https://doi.org/10.31857/S0235711923010029
  13. Panovko Y.G. Internal friction in oscillations of elastic systems. M.: Fizmatgiz, 1960 (in Russian).
  14. Svetlitsky V.A. Mechanics of rods. M.: Vyshaya Shkola, 1987 (in Russian).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Calculation scheme of a rotating shaft: 1 – precession trajectory, 2 – direction of rotation.

下载 (13KB)
3. Fig. 2. Argand diagram in the range of rotation speeds.

下载 (15KB)
4. Fig. 3. Displacements of the middle node at the supercritical speed at , , : (a) , ; (b) , ; (c) , .

下载 (41KB)
5. Fig. 4. Bifurcation diagram along the upper periodic branch, A – limit point, B – subcritical bifurcation ( , , , , ).

下载 (22KB)
6. Fig. 5. Precession of the cross-section of the rod corresponding to the middle node.

下载 (9KB)
7. Fig. 6. Distribution of the average value of the precession coefficient along the upper stable branch ( , , , , ).

下载 (15KB)
8. Fig. 7. Trajectories of collocation nodes during steady motion (black lines) and the shape of the curved axis (red lines) ( , , , , , ).

下载 (19KB)
9. Fig. 8. Dependence of and on the coefficient (a); distribution of the amplitudes of the displacements of the middle node during subcritical (b) and supercritical (c) bifurcations ( , , , ).

下载 (44KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».