Stress intensity factors at the top of the central semi-infinite crack in an arbitraly loaded isotropic strip

封面

如何引用文章

全文:

详细

A two-dimensional problem of elasticity theory on an isotropic strip with a central semi-infinite crack is considered. The load in the form of a concentrated force is assumed to be applied at an arbitrary point of the strip. Using invariant mutual integrals and solutions for a strip loaded with bending moments and longitudinal forces applied at infinity, expressions for stress intensity factors (SIF) for the problem under consideration are obtained. The cases of forces applied at the crack faces, at the strip boundaries and at the internal points of the strip are considered. Asymptotic expressions are obtained for the cases of application of forces far from the crack tip and forces applied at the crack faces near its tip. The obtained solutions are shown to coincide with known solutions for special cases: loads in the form of a pair of normal forces applied to the crack faces and forces applied far from the crack tip.

全文:

1. Введение. Задачи о трещинах в полосе, расположенных параллельно ее границам, используются в многочисленных приложениях, в частности при интерпретации результатов стандартных испытаний на разрушение, таких как трех- и четырехточечный изгиб [1­–­6], при исследовании процессов разрушения в многослойных конструкциях [7, 8], моделировании адгезионного взаимодействия [9­–­11] и отслоения покрытий ­[12­–­22].

В простейших случаях, таких как нагружение изгибающими моментами или продольными силами, выражения для скорости высвобождения энергии (СВЭ) при приращении длины трещины получаются элементарно с применением элементарных балочных теорий [13, 14, 23, 24]. При наличии симметрии с помощью данного подхода можно также определить коэффициенты интенсивности напряжений (КИН).

Кроме элементарных решений, известно много других, полученных как аналитическими [25, 26], так и полуаналитическими, и численными методами [27, 29].

Весьма эффективным подходом к решению задач о полубесконечных трещинах является применение интегральных преобразований и метода Винера–Хопфа ­[30­–­36]. Обобщения на случай анизотропных полос получены в работах ­[37­–­42], полос, составленных из различных материалов, – в работе [43]. Если нагрузка прикладывается достаточно далеко от вершины трещины, так что ее можно рассматривать как приложенную на бесконечности, применение данного подхода приводит к однородной задаче, значения КИН при этом выражаются через однократные интегралы, которые в случае нагружения изгибающими моментами и продольными силами вычисляются в явном виде, и выражения для КИН совпадают с выражениями, полученными с помощью балочных теорий. В случае приложения нагрузки на конечном расстоянии от вершины трещины задача может быть решена путем сведения ее к неоднородной краевой задаче, решение которой представляется в виде двойных интегралов. В представленном исследовании используется другой подход, основанный на применении взаимных инвариантных интегралов (например, ­[44­–­46]) и использовании решения однородной задачи [35]. Использование данного подхода позволило получить выражения для КИН от действия произвольных, необязательно приложенных попарно к берегам трещины сил, в том числе для сил, приложенных во внутренних точках полосы, как на расслоившемся участке, так и в точках на продолжении линии трещины.

2. Формулировка задачи. Рассматривается полоса h< x 2 <h MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqGHsislcaWGObGaeyipaWJaamiEamaaBaaale aacaaIYaaabeaakiabgYda8iaadIgaaaa@37C9@  с полубесконечной центральной трещиной x<0,y=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bGaeyipaWJaaGimaiaacYcacaaMc8Uaam yEaiabg2da9iaaicdaaaa@38BF@  в декартовых координатах x 1 , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilai aadIhadaWgaaWcbaGaaGOmaaqabaaaaa@358E@  с началом в вершине трещины и осью x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaaa@32EF@ ,направленной вдоль продолжения линии трещины (рис. 1). Задача решается в двумерной постановке в рамках теории малых деформаций. Упругие свойства определяются модулем Юнга E ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaceWGfbGbaebaaaa@31EC@  и коэффициентом Пуассона ν ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacuaH9oGBgaqeaaaa@32DA@ , либо истинными (для плоского напряженного состояния), либо модифицированными для условий плоской деформации:

  E ¯ = Eplanestress E/ 1 ν 2 planestain , ν ¯ = νplanestress ν / 1 ν planestain MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeduuDJXwAKbYu51MyVXgarqqr1ngBPrgifHhD YfgasaacHOWxh9vrFfeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vspGe9FjuP0=fs0xXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaaiaadaqabeaabeqacqaaaOqaaiqadweagaqeai abg2da9maaceaabaqbaeqabiqaaaqaaiaadweacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caqGWbGaaeiBaiaabggacaqGUbGaaeyzaiaaykW7caqGZbGaaeiD aiaabkhacaqGLbGaae4CaiaabohaaeaacaWGfbGaai4lamaabmaaba GaaGymaiabgkHiTiabe27aUnaaDaaaleaaaeaacaaMc8UaaGOmaaaa aOGaayjkaiaawMcaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaabchacaqGSbGaaeyyaiaab6gacaqGLbGaaGPaVlaabohacaqG 0bGaaeyyaiaabMgacaqGUbaaaaGaay5EaaGaaiilaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlqbe27aUzaaraGaeyypa0Zaaiqa aeaafaqabeGabaaabaGaeqyVd4MaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaeiCaiaa bYgacaqGHbGaaeOBaiaabwgacaaMc8Uaae4CaiaabshacaqGYbGaae yzaiaabohacaqGZbaabaGaeqyVd42aaWbaaSqabeaaaaGccaGGVaWa aeWaaeaacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaaaaaakiaawI cacaGLPaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqG WbGaaeiBaiaabggacaqGUbGaaeyzaiaaykW7caqGZbGaaeiDaiaabg gacaqGPbGaaeOBaaaaaiaawUhaaaaa@EFF1@              (2.1)

 

Рис. 1. Геометрия и система прикладываемых нагрузок.

 

Система уравнений включает уравнения равновесия, совместности, закона Гука и соотношений, связывающих деформации со смещениями:

  σ ij,i + Q j =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHdpWCdaqhaaWcbaGaamyAaiaadQgacaGGSa GaamyAaaqaaaaakiabgUcaRiaadgfadaWgaaWcbaGaamOAaaqabaGc cqGH9aqpcaaIWaaaaa@3B1C@ ,                                          (2.2)

  ε 11,22 + ε 22,11 2 ε 12,12 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH1oqzdaqhaaWcbaGaaGymaiaaigdacaGGSa GaaGOmaiaaikdaaeaaaaGccqGHRaWkcqaH1oqzdaqhaaWcbaGaaGOm aiaaikdacaGGSaGaaGymaiaaigdaaeaaaaGccqGHsislcaaIYaGaeq yTdu2aa0baaSqaaiaaigdacaaIYaGaaiilaiaaigdacaaIYaaabaaa aOGaeyypa0JaaGimaaaa@45C9@ ,                 (2.3)

  ε 11 = 1 E ¯ (k) σ 11 ν ¯ E ¯ σ 22 , ε 22 = 1 E ¯ σ 22 (k) ν ¯ E ¯ σ 11 , ε 12 = 1+ ν ¯ E ¯ σ 12 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH1oqzdaqhaaWcbaGaaGymaiaaigdaaeaaaa GccqGH9aqpdaWcaaqaaiaaigdaaeaaceWGfbGbaebadaahaaWcbeqa aiaacIcacaWGRbGaaiykaaaaaaGccqaHdpWCdaqhaaWcbaGaaGymai aaigdaaeaaaaGccqGHsisldaWcaaqaaiqbe27aUzaaraaabaGabmyr ayaaraaaaiabeo8aZnaaDaaaleaacaaIYaGaaGOmaaqaaaaakiaacY cacaaMc8UaaGPaVlaaykW7caaMc8UaeqyTdu2aa0baaSqaaiaaikda caaIYaaabaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGabmyrayaara aaaiabeo8aZnaaDaaaleaacaaIYaGaaGOmaaqaaiaacIcacaWGRbGa aiykaaaakiabgkHiTmaalaaabaGafqyVd4MbaebaaeaaceWGfbGbae baaaGaeq4Wdm3aa0baaSqaaiaaigdacaaIXaaabaaaaOGaaiilaiaa ykW7caaMc8UaaGPaVlaaykW7cqaH1oqzdaqhaaWcbaGaaGymaiaaik daaeaaaaGccqGH9aqpdaWcaaqaaiaaigdacqGHRaWkcuaH9oGBgaqe aaqaaiqadweagaqeaaaacqaHdpWCdaqhaaWcbaGaaGymaiaaikdaae aaaaaaaa@70DE@ ,                 (2.4)

  ε ij = 1 2 u i,j + u j,i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaaaa GccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaamyD amaaDaaaleaacaWGPbGaaiilaiaadQgaaeaaaaGccqGHRaWkcaWG1b Waa0baaSqaaiaadQgacaGGSaGaamyAaaqaaaaaaOGaayjkaiaawMca aaaa@4139@ .                                     

Здесь σ ij , ε ij , u i , Q i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaaaa GccaGGSaGaaGPaVlaaykW7cqaH1oqzdaqhaaWcbaGaamyAaiaadQga aeaaaaGccaGGSaGaaGPaVlaaykW7caWG1bWaa0baaSqaaiaadMgaae aaaaGccaGGSaGaaGPaVlaaykW7caWGrbWaa0baaSqaaiaadMgaaeaa aaGccaaMc8UaaGPaVdaa@4B1E@  – компоненты тензора напряжения, тензора деформаций, вектора смещения и приложенной сосредоточенной силы. Индекс после запятой означает производную по соответствующей координате, под повторяющимися индексами подразумевается суммирование.

Сосредоточенная сила с компонентами Q 1 , Q 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGrbWaaSbaaSqaaiaaigdaaeqaaOGaaiilai aadgfadaWgaaWcbaGaaGOmaaqabaaaaa@3540@  приложена в некоторой точке слоя < x 1 0 <,h x 2 0 h MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqGHsislcqGHEisPcqGH8aapcaWG4bWaa0baaS qaaiaaigdaaeaacaaIWaaaaOGaeyipaWJaeyOhIuQaaiilaiaaykW7 caaMc8UaeyOeI0IaamiAaiabgsMiJkaadIhadaqhaaWcbaGaaGOmaa qaaiaaicdaaaGccqGHKjYOcaWGObaaaa@462C@  либо внутри слоя, либо на внешней границе или на берегу трещины. Компенсирующие нагрузки в виде сил Q 1 , Q 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqGHsislcaWGrbWaaSbaaSqaaiaaigdaaeqaaO GaaiilaiabgkHiTiaadgfadaWgaaWcbaGaaGOmaaqabaaaaa@371A@  и момента M R = x 2 0 Q 1 + l R x 1 0 Q 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGnbWaaSbaaSqaaiaadkfaaeqaaOGaeyypa0 JaamiEamaaDaaaleaacaaIYaaabaGaaGimaaaakiaadgfadaWgaaWc baGaaGymaaqabaGccqGHRaWkdaqadaqaaiaadYgadaWgaaWcbaGaam OuaaqabaGccqGHsislcaWG4bWaa0baaSqaaiaaigdaaeaacaaIWaaa aaGccaGLOaGaayzkaaGaamyuamaaBaaaleaacaaIYaaabeaaaaa@421E@  приложены в точке ( l R +,0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaGGOaGaamiBamaaBaaaleaacaWGsbaabeaaki abgkziUkabgUcaRiabg6HiLkaacYcacaaIWaGaaiykaiaaykW7caaM c8oaaa@3D21@  для обеспечения глобального равновесия (рис. 1). Берега трещины и внешние границы полосы свободны от напряжений (за исключением случаев x 2 0 =±0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaa0baaSqaaiaaikdaaeaacaaIWaaaaO Gaeyypa0JaeyySaeRaaGimaaaa@3763@  и x 2 0 =±h MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaa0baaSqaaiaaikdaaeaacaaIWaaaaO Gaeyypa0JaeyySaeRaamiAaaaa@3796@  ):

  σ 22 x,h = σ 12 x,h = σ 22 x,h = σ 12 x,h =0,<x<+ σ 22 (1) x,0 = σ 12 (1) x,0 = σ 22 (2) x,0 = σ 12 (2) x,0 ,<x<0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiabeo8aZnaaDaaaleaacaaIYaGaaGOmaa qaaaaakmaabmaabaGaamiEaiaacYcacaWGObaacaGLOaGaayzkaaGa eyypa0Jaeq4Wdm3aa0baaSqaaiaaigdacaaIYaaabaaaaOWaaeWaae aacaWG4bGaaiilaiaadIgaaiaawIcacaGLPaaacqGH9aqpcqaHdpWC daqhaaWcbaGaaGOmaiaaikdaaeaaaaGcdaqadaqaaiaadIhacaGGSa GaeyOeI0IaamiAaaGaayjkaiaawMcaaiabg2da9iabeo8aZnaaDaaa leaacaaIXaGaaGOmaaqaaaaakmaabmaabaGaamiEaiaacYcacqGHsi slcaWGObaacaGLOaGaayzkaaGaeyypa0JaaGimaiaacYcacaaMc8Ua aGPaVlaaykW7cqGHsislcqGHEisPcqGH8aapcaWG4bGaeyipaWJaey 4kaSIaeyOhIukabaaabqaW9labeo8aZnaaDaaaleaacaaIYaGaaGOm aaqaaiaacIcacaaIXaGaaiykaaaakmaabmaabaGaamiEaiaacYcaca aIWaaacaGLOaGaayzkaaGaeyypa0Jaeq4Wdm3aa0baaSqaaiaaigda caaIYaaabaGaaiikaiaaigdacaGGPaaaaOWaaeWaaeaacaWG4bGaai ilaiaaicdaaiaawIcacaGLPaaacqGH9aqpcqaHdpWCdaqhaaWcbaGa aGOmaiaaikdaaeaacaGGOaGaaGOmaiaacMcaaaGcdaqadaqaaiaadI hacaGGSaGaaGimaaGaayjkaiaawMcaaiabg2da9iabeo8aZnaaDaaa leaacaaIXaGaaGOmaaqaaiaacIcacaaIYaGaaiykaaaakmaabmaaba GaamiEaiaacYcacaaIWaaacaGLOaGaayzkaaGaaiilaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHsislcqGHEisPcq GH8aapcaWG4bGaeyipaWJaaGimaiaac6caaaaa@A00E@              (2.6)

Здесь верхние индексы 1, 2 относятся к верхнему и нижнему берегам трещины соответственно.

Задача состоит в определении коэффициентов интенсивности напряжений (КИН) для приложенных нагрузок.

3. Выражения для коэффициентов интенсивности напряжений через взаимные инвариантные интегралы. Если известно решение некоторой вспомогательной задачи для рассматриваемой конфигурации и иной системы внешних нагрузок, используя взаимные инвариантные интегралы (например ­[44­–­46]), можно получить решение рассматриваемой задачи или по крайней мере некоторые интересующие величины. Рассмотрим две такие вспомогательные задачи: нагружение парой изгибающих моментов M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGnbaaaa@31DD@ , приложенных к разделяемым участкам полосы достаточно далеко от вершины трещины (рис. 2a), и нагружение парой равных, но противоположно направленных сил T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGubaaaa@31E4@ , приложенных также достаточно далеко от вершины трещины к ее берегам (рис. 2б). Далее величины, относящиеся к данным задачам, будут обозначаться верхними индексами M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGnbaaaa@31DD@  и T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGubaaaa@31E4@  соответственно.

 

Рис. 2. Система прикладываемых нагрузок для вспомогательных задач: нагружение парой изгибающих моментов (a); нагружение парой сил с компенсирующими моментами (b).

 

Рассмотрим взаимные инвариантные интегралы (например, [44]) для двух состояний: состояние f MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGMbaaaa@31F6@ , соответствующее исходной задаче о приложенной силе Q k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGrbWaaSbaaSqaaiaadUgaaeqaaaaa@32FD@ , и состояние A MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGbbaaaa@31D1@ , соответствующее одной из вспомогательных задач M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGnbaaaa@31DD@ , или T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGubaaaa@31E4@ :

  M A,f =J u i A + u i f J u i A J u i f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGnbWaaWbaaSqabeaadaqadaqaaiaadgeaca GGSaGaaiOzaaGaayjkaiaawMcaaaaakiabg2da9iaadQeadaqadaqa aiaadwhadaqhaaWcbaGaamyAaaqaaiaadgeaaaGccqGHRaWkcaWG1b Waa0baaSqaaiaadMgaaeaacaWGMbaaaaGccaGLOaGaayzkaaGaeyOe I0IaamOsamaabmaabaGaamyDamaaDaaaleaacaWGPbaabaGaamyqaa aaaOGaayjkaiaawMcaaiabgkHiTiaadQeadaqadaqaaiaadwhadaqh aaWcbaGaamyAaaqaaiaadAgaaaaakiaawIcacaGLPaaaaaa@4CA4@ .                                                               (3.1)

Здесь J u i A ,J u i f ,J u i A + u i f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGkbWaaeWaaeaacaWG1bWaa0baaSqaaiaadM gaaeaacaWGbbaaaaGccaGLOaGaayzkaaGaaiilaiaadQeadaqadaqa aiaadwhadaqhaaWcbaGaamyAaaqaaiaadAgaaaaakiaawIcacaGLPa aacaGGSaGaamOsamaabmaabaGaamyDamaaDaaaleaacaWGPbaabaGa amyqaaaakiabgUcaRiaadwhadaqhaaWcbaGaamyAaaqaaiaadAgaaa aakiaawIcacaGLPaaaaaa@4632@ – J-интегралы, соответствующие состоя­ниям A,f MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGbbGaaiilaiaaykW7caWGMbaaaa@34F7@ и их суперпозиции. С использованием определения J-интеграла ­[47­–­49] формула преобразуется к следующему виду (например, [46]):

  M A,f = Γ σ ik A ε ik f δ j1 σ ij A u i,1 f σ ij f u i,1 A n j dΓ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGnbWaaWbaaSqabeaadaqadaqaaiaadgeaca GGSaGaamOzaaGaayjkaiaawMcaaaaakiabg2da9maapefabaWaamWa aeaacqaHdpWCdaqhaaWcbaGaamyAaiaadUgaaeaacaWGbbaaaOGaeq yTdu2aa0baaSqaaiaadMgacaWGRbaabaGaamOzaaaakiabes7aKnaa BaaaleaacaWGQbGaaGymaaqabaGccqGHsislcqaHdpWCdaqhaaWcba GaamyAaiaadQgaaeaacaWGbbaaaOGaamyDamaaDaaaleaacaWGPbGa aiilaiaaigdaaeaacaWGMbaaaOGaeyOeI0Iaeq4Wdm3aa0baaSqaai aadMgacaWGQbaabaGaamOzaaaakiaadwhadaqhaaWcbaGaamyAaiaa cYcacaaIXaaabaGaamyqaaaaaOGaay5waiaaw2faaaWcbaGaeu4KdC eabeqdcqGHRiI8aOGaaGjbVlaad6gadaWgaaWcbaGaamOAaaqabaGc caWGKbGaeu4KdCeaaa@636F@ .                                                   (3.2)

Здесь Γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHtoWraaa@3272@  – контур, который может быть выбран одним из образов, либо Γ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHtoWrdaWgaaWcbaGaaGymaaqabaaaaa@3359@ , окружающий вершину трещины, либо Γ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHtoWrdaWgaaWcbaGaaGOmaaqabaaaaa@335A@ , окружающий внутреннюю часть слоя с исключением точки приложения сосредоточенной силы; n j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGUbWaaSbaaSqaaiaadQgaaeqaaaaa@3318@ – внешняя нормаль к контуру (рис. 3). Взаимные интегралы, соответствующие контурам Γ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHtoWrdaWgaaWcbaGaaGymaaqabaaaaa@3359@  и Γ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHtoWrdaWgaaWcbaGaaGOmaaqabaaaaa@335A@ , будут означаться M 1 A,f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGnbWaa0baaSqaaiaaigdaaeaadaqadaqaai aadgeacaGGSaGaaiOzaaGaayjkaiaawMcaaaaaaaa@36AD@  и M 2 A,f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGnbWaa0baaSqaaiaaikdaaeaadaqadaqaai aadgeacaGGSaGaaiOzaaGaayjkaiaawMcaaaaaaaa@36AE@  соответственно.

 

Рис. 3. Контуры при вычислении инвариантных интегралов.

 

Рассмотрим сначала интеграл по контуру Γ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHtoWrdaWgaaWcbaGaaGymaaqabaaaaa@3359@ . Его величина определяется с помощью формулы Ирвина [50] (см. также [51]):

  M A,f Γ 1 = 2 E ¯ K 1 A K 1 f + K 2 A K 2 f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGnbWaa0baaSqaaaqaamaabmaabaGaamyqai aacYcacaGGMbaacaGLOaGaayzkaaaaaOWaaeWaaeaacqqHtoWrdaWg aaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGH9aqpdaWcaaqaai aaikdaaeaaceWGfbGbaebaaaWaaeWaaeaacaWGlbWaa0baaSqaaiaa igdaaeaacaWGbbaaaOGaam4samaaDaaaleaacaaIXaaabaGaamOzaa aakiabgUcaRiaadUeadaqhaaWcbaGaaGOmaaqaaiaadgeaaaGccaWG lbWaa0baaSqaaiaaikdaaeaacaWGMbaaaaGccaGLOaGaayzkaaaaaa@4969@ .  (3.3)

Здесь K 1 A , K 2 A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGlbWaa0baaSqaaiaaigdaaeaacaWGbbaaaO GaaiilaiaadUeadaqhaaWcbaGaaGOmaaqaaiaadgeaaaaaaa@36C1@ – нормальная и сдвиговая составляющие КИН для вспомогательных; K 1 f , K 2 f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGlbWaa0baaSqaaiaaigdaaeaacaWGMbaaaO GaaiilaiaadUeadaqhaaWcbaGaaGOmaaqaaiaadAgaaaaaaa@370B@ – нормальная и сдвиговая составляющие КИН для исходной задачи.

Рассмотрим интегрирование по контуру Γ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHtoWrdaWgaaWcbaGaaGOmaaqabaaaaa@335A@ . Его правый вертикальный сегмент может быть проведен достаточно далеко, так что напряжения, деформации и производные смещений для вспомогательных задач могут быть рассматриваемы как исчезающе малые. Аналогично напряжения и деформации вдоль левого вертикального сегмента, путем отнесения его на достаточное расстояние, становятся исчезающе малыми для основной задачи, при этом производная от смещения u 2,1 f MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG1bWaa0baaSqaaiaaikdacaGGSaGaaGymaa qaaiaadAgaaaaaaa@3544@  остается постоянной. Этого достаточно для того, чтобы соответствующие интегралы, рассчитываемые вдоль данных сегментов, обращались в ноль. На горизонтальных границах нулевые нормальные и касательные напряжения в основной и вспомогательной задачах приводят к обнулению интегралов вдоль них. Таким образом, единственным участком контура Γ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHtoWrdaWgaaWcbaGaaGOmaaqabaaaaa@335A@ , дающим вклад в интеграл, является участок, окружающий точку приложения силы:

  M A,f Γ 2 = Q 1 u 1,1 A x 1 0 , x 2 0 Q 2 u 2,1 A x 1 0 , x 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGnbWaa0baaSqaaaqaamaabmaabaGaamyqai aacYcacaGGMbaacaGLOaGaayzkaaaaaOWaaeWaaeaacqqHtoWrdaWg aaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGH9aqpcqGHsislca WGrbWaaSbaaSqaaiaaigdaaeqaaOGaamyDamaaDaaaleaacaaIXaGa aiilaiaaigdaaeaacaWGbbaaaOWaaeWaaeaacaWG4bWaa0baaSqaai aaigdaaeaacaaIWaaaaOGaaiilaiaadIhadaqhaaWcbaGaaGOmaaqa aiaaicdaaaaakiaawIcacaGLPaaacqGHsislcaWGrbWaaSbaaSqaai aaikdaaeqaaOGaamyDamaaDaaaleaacaaIYaGaaiilaiaaigdaaeaa caWGbbaaaOWaaeWaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIWa aaaOGaaiilaiaadIhadaqhaaWcbaGaaGOmaaqaaiaaicdaaaaakiaa wIcacaGLPaaaaaa@57A1@ .                                                  (3.4)

Приравнивая величины, стоящие в правых частях (3.3) и (3.4), получаем:

  2 E ¯ K 1 M K 1 f + K 2 M K 2 f = Q k u k,1 M x 1 0 , x 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaaiaaikdaaeaaceWGfbGbaebaaaWaae WaaeaacaWGlbWaa0baaSqaaiaaigdaaeaacaWGnbaaaOGaam4samaa DaaaleaacaaIXaaabaGaamOzaaaakiabgUcaRiaadUeadaqhaaWcba GaaGOmaaqaaiaad2eaaaGccaWGlbWaa0baaSqaaiaaikdaaeaacaWG MbaaaaGccaGLOaGaayzkaaGaeyypa0JaeyOeI0IaamyuamaaBaaale aacaWGRbaabeaakiaadwhadaqhaaWcbaGaam4AaiaacYcacaaIXaaa baGaamytaaaakmaabmaabaGaamiEamaaDaaaleaacaaIXaaabaGaaG imaaaakiaacYcacaWG4bWaa0baaSqaaiaaikdaaeaacaaIWaaaaaGc caGLOaGaayzkaaaaaa@4F80@ ,                                                           (3.5)

  2 E ¯ K 1 T K 1 f + K 2 T K 2 f = Q k u k,1 T x 1 0 , x 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaaiaaikdaaeaaceWGfbGbaebaaaWaae WaaeaacaWGlbWaa0baaSqaaiaaigdaaeaacaWGubaaaOGaam4samaa DaaaleaacaaIXaaabaGaamOzaaaakiabgUcaRiaadUeadaqhaaWcba GaaGOmaaqaaiaadsfaaaGccaWGlbWaa0baaSqaaiaaikdaaeaacaWG MbaaaaGccaGLOaGaayzkaaGaeyypa0JaeyOeI0IaamyuamaaBaaale aacaWGRbaabeaakiaadwhadaqhaaWcbaGaam4AaiaacYcacaaIXaaa baGaamivaaaakmaabmaabaGaamiEamaaDaaaleaacaaIXaaabaGaaG imaaaakiaacYcacaWG4bWaa0baaSqaaiaaikdaaeaacaaIWaaaaaGc caGLOaGaayzkaaaaaa@4F95@ .                                                              (3.6)

Если известны остальные величины, входящие в выражения (3.5), (3.6), эту систему можно решить относительно величин K 1 f , K 2 f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGlbWaa0baaSqaaiaaigdaaeaacaWGMbaaaO GaaiilaiaaykW7caWGlbWaa0baaSqaaiaaikdaaeaacaWGMbaaaaaa @3896@ . С учетом того, что выражения для K 1 M K 1 T , K 2 M K 2 T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGlbWaa0baaSqaaiaaigdaaeaacaWGnbaaaO Gaam4samaaDaaaleaacaaIXaaabaGaamivaaaakiaacYcacaWGlbWa a0baaSqaaiaaikdaaeaacaWGnbaaaOGaam4samaaDaaaleaacaaIYa aabaGaamivaaaaaaa@3C10@  для рассматриваемого случая центральной трещины в однородной изотропной упругой полосе могут быть получены элементарно и известны (например, [35]):

  K 1 M = 12 M, K 2 M =0, K 1 T =0, K 2 T =2T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGlbWaa0baaSqaaiaaigdaaeaacaWGnbaaaO Gaeyypa0ZaaOaaaeaacaaIXaGaaGOmaaWcbeaakiaad2eacaGGSaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGlbWaa0baaSqaaiaaik daaeaacaWGnbaaaOGaeyypa0JaaGimaiaacYcacaaMc8UaaGPaVlaa dUeadaqhaaWcbaGaaGymaaqaaiaadsfaaaGccqGH9aqpcaaIWaGaai ilaiaaykW7caaMc8UaaGPaVlaadUeadaqhaaWcbaGaaGOmaaqaaiaa dsfaaaGccqGH9aqpcaaIYaGaamivaaaa@5677@ ,                                                    (3.7)

данное решение может быть представлено в виде:

   K 1 f = E ¯ u 1,1 M x 1 0 , x 2 0 4 3 Q 1 E ¯ u 2,1 M x 1 0 , x 2 0 4 3 Q 2 , K 2 f = E ¯ u 1,1 T x 1 0 , x 2 0 4 Q 1 E ¯ u 2,1 T x 1 0 , x 2 0 4 Q 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGlbWaa0baaSqaaiaaigdaaeaacaWGMbaaaO Gaeyypa0JaeyOeI0YaaSaaaeaaceWGfbGbaebacaWG1bWaa0baaSqa aiaaigdacaGGSaGaaGymaaqaaiaad2eaaaGcdaqadaqaaiaadIhada qhaaWcbaGaaGymaaqaaiaaicdaaaGccaGGSaGaamiEamaaDaaaleaa caaIYaaabaGaaGimaaaaaOGaayjkaiaawMcaaaqaaiaaisdadaGcaa qaaiaaiodaaSqabaaaaOGaamyuamaaBaaaleaacaaIXaaabeaakiab gkHiTmaalaaabaGabmyrayaaraGaamyDamaaDaaaleaacaaIYaGaai ilaiaaigdaaeaacaWGnbaaaOWaaeWaaeaacaWG4bWaa0baaSqaaiaa igdaaeaacaaIWaaaaOGaaiilaiaadIhadaqhaaWcbaGaaGOmaaqaai aaicdaaaaakiaawIcacaGLPaaaaeaacaaI0aWaaOaaaeaacaaIZaaa leqaaaaakiaadgfadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caWGlbWaa0baaSqaaiaaikdaaeaa caWGMbaaaOGaeyypa0JaeyOeI0YaaSaaaeaaceWGfbGbaebacaWG1b Waa0baaSqaaiaaigdacaGGSaGaaGymaaqaaiaadsfaaaGcdaqadaqa aiaadIhadaqhaaWcbaGaaGymaaqaaiaaicdaaaGccaGGSaGaamiEam aaDaaaleaacaaIYaaabaGaaGimaaaaaOGaayjkaiaawMcaaaqaaiaa isdaaaGaamyuamaaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaaba GabmyrayaaraGaamyDamaaDaaaleaacaaIYaGaaiilaiaaigdaaeaa caWGubaaaOWaaeWaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIWa aaaOGaaiilaiaadIhadaqhaaWcbaGaaGOmaaqaaiaaicdaaaaakiaa wIcacaGLPaaaaeaacaaI0aaaaiaadgfadaWgaaWcbaGaaGOmaaqaba aaaa@8308@ .                                                                    (3.8)

Выражения дают значения КИН, вызванные действием сосредоточенной силы, приложенной в произвольной точке полосы. В общем случае обе моды КИН зависят от обеих компонент прикладываемой силы. Однако в случае двух сил, прикладываемых в точках, зеркально расположенных от линии трещины и противоположных по направлению, благодаря симметрии нормальная и сдвиговая моды КИН становятся зависящими только от нормальной и тангенциальной составляющей прикладываемой пары соответственно.

Для вычисления КИН с использованием (3.8) необходимо вычислить величины производных от смещений u 1,1 M , u 2,1 M , u 1,1 T , u 2,1 T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG1bWaa0baaSqaaiaaigdacaGGSaGaaGymaa qaaiaad2eaaaGccaGGSaGaaGPaVlaadwhadaqhaaWcbaGaaGOmaiaa cYcacaaIXaaabaGaamytaaaakiaacYcacaaMc8UaamyDamaaDaaale aacaaIXaGaaiilaiaaigdaaeaacaWGubaaaOGaaiilaiaaykW7caWG 1bWaa0baaSqaaiaaikdacaGGSaGaaGymaaqaaiaadsfaaaaaaa@4865@  для вспомогательных задач в точках приложения силы основной задачи.

4. Выражения для производных от компонент смещения для вспомогательных задач. 4.1. Общий случай; выражения через интегралы. Наиболее удобным для использования решением вспомогательных задач в нашем случае представляется решение [35], дающее не только значения КИН, но и, в частности, распределение напряжений вдоль линии продолжения трещины для нагружения парой сосредоточенных моментов и парой продольных сил, приложенных вдали от вершины трещины. В работе [52] на основе этого решения были получены выражения производных от компонент смещения на внешней границе полосы для случая нагружения парой моментов. Использованный в работе [52] подход, основанный на решении задачи о полосе с применением двустороннего преобразования Лапласа (соответствующей верхней части исходной полосы) с заданными нагрузками на границах, позволяет получить значения производных в произвольной точке.

Двустороннее преобразование Лапласа по переменной x 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaaa@32EE@  определяется как (например, [35])

  f ^ p, x 2 = f x 1 , x 2 e p x 1 d x 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqiaaqaaiaadAgaaiaawkWaamaabmaabaGaam iCaiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzk aaGaeyypa0Zaa8qCaeaacaWGMbWaaeWaaeaacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaa wIcacaGLPaaacaaMc8oaleaacqGHsislcqGHEisPaeaacqGHEisPa0 Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiaadchacaWG4bWa aSbaaWqaaiaaigdaaeqaaaaakiaadsgacaWG4bWaaSbaaSqaaiaaig daaeqaaaaa@4F5D@ .         (4.1)

Обратное преобразование определяется при этом:

  f x 1 , x 2 = 1 2πi L f ^ p, x 2 e p x 1 dp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGMbWaaeWaaeaacaWG4bWaaSbaaSqaaiaaig daaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaaakiaawIca caGLPaaacqGH9aqpcqGHsisldaWcaaqaaiaaigdaaeaacaaIYaGaeq iWdaNaamyAaaaacaaMc8UaaGPaVlaaykW7daWdrbqaamaaHaaabaGa amOzaaGaayPadaWaaeWaaeaacaWGWbGaaiilaiaadIhadaWgaaWcba GaaGOmaaqabaaakiaawIcacaGLPaaacaWGLbWaaWbaaSqabeaacaWG WbGaamiEamaaBaaameaacaaIXaaabeaaaaGccaWGKbGaamiCaaWcba Gaamitaaqab0Gaey4kIipaaaa@528F@ ,  (4.2)

где контур L MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGmbaaaa@31DC@  соответствует мнимой оси комплексной плоскости p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGWbaaaa@3200@ , а направление контура – сверху вниз.

Решение для верхней полуполосы дается в виде образа функции напряжений Эри:

  F ^ p, x 2 = A 1 cos p x 2 + A 2 sin p x 2 + A 3 ysin p x 2 + A 4 ycos p x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqiaaqaaiaadAeaaiaawkWaamaabmaabaGaam iCaiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzk aaGaeyypa0JaamyqamaaBaaaleaacaaIXaaabeaakiGacogacaGGVb Gaai4CamaabmaabaGaamiCaiaadIhadaWgaaWcbaGaaGOmaaqabaaa kiaawIcacaGLPaaacqGHRaWkcaWGbbWaaSbaaSqaaiaaikdaaeqaaO Gaci4CaiaacMgacaGGUbWaaeWaaeaacaWGWbGaamiEamaaBaaaleaa caaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiaadgeadaWgaaWcba GaaG4maaqabaGccaWG5bGaci4CaiaacMgacaGGUbWaaeWaaeaacaWG WbGaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgU caRiaadgeadaWgaaWcbaGaaGinaaqabaGccaWG5bGaci4yaiaac+ga caGGZbWaaeWaaeaacaWGWbGaamiEamaaBaaaleaacaaIYaaabeaaaO GaayjkaiaawMcaaaaa@6148@ ,      (4.3)

где

  A 1 = q ^ 2 p 2 , A 4 = cos2p1 2p sin 2 p p 2 q ^ 1 + sin2p+2p 2p sin 2 p p 2 q ^ 2 , A 2 = q ^ 1 sin 2 p p 2 sin2p+2p 2 p 2 sin 2 p p 2 q ^ 2 , A 3 = cos2p1 2p sin 2 p p 2 q ^ 2 sin2p2p 2p sin 2 p p 2 q ^ 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaaceqaaiaadgeadaWgaaWcbaGaaGymaaqabaGccq GH9aqpdaWcaaqaamaaHaaabaGaamyCaaGaayPadaWaaSbaaSqaaiaa ikdaaeqaaaGcbaaeaaaaaaaaa8qacaWGWbWdamaaCaaaleqabaWdbi aaikdaaaaaaOWdaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaamyqamaaBaaaleaacaaI0aaabeaakiabg2da98 qadaWcaaWdaeaapeGaci4yaiaac+gacaGGZbGaaGOmaiaadchacqGH sislcaaIXaaapaqaa8qacaaIYaGaamiCamaabmaapaqaa8qaciGGZb GaaiyAaiaac6gapaWaaWbaaSqabeaapeGaaGOmaaaakiaadchacqGH sislcaWGWbWdamaaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPa aaaaWdamaaHaaabaGaamyCaaGaayPadaWaaSbaaSqaaiaaigdaaeqa aOWdbiabgUcaRmaalaaapaqaa8qaciGGZbGaaiyAaiaac6gacaaIYa GaamiCaiabgUcaRiaaikdacaWGWbaapaqaa8qacaaIYaGaamiCamaa bmaapaqaa8qaciGGZbGaaiyAaiaac6gapaWaaWbaaSqabeaapeGaaG Omaaaak8aacaWGWbWdbiabgkHiTiaadchapaWaaWbaaSqabeaapeGa aGOmaaaaaOGaayjkaiaawMcaaaaapaWaaecaaeaacaWGXbaacaGLcm aadaWgaaWcbaGaaGOmaaqabaGcpeGaaiilaiaaykW7aeaapaGaamyq amaaBaaaleaacaaIYaaabeaakiabg2da98qadaWcaaWdaeaadaqiaa qaaiaadghaaiaawkWaamaaBaaaleaacaaIXaaabeaaaOqaa8qaciGG ZbGaaiyAaiaac6gapaWaaWbaaSqabeaapeGaaGOmaaaak8aacaWGWb WdbiabgkHiTiaadchapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccqGH sisldaWcaaWdaeaapeGaci4CaiaacMgacaGGUbGaaGOmaiaadchacq GHRaWkcaaIYaGaamiCaaWdaeaapeGaaGOmaiaadchapaWaaWbaaSqa beaapeGaaGOmaaaakmaabmaapaqaa8qaciGGZbGaaiyAaiaac6gapa WaaWbaaSqabeaapeGaaGOmaaaak8aacaWGWbWdbiabgkHiTiaadcha paWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaaaaapaWaae caaeaacaWGXbaacaGLcmaadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa aGPaVlaaykW7aeaacaWGbbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0 ZdbiabgkHiTmaalaaapaqaa8qaciGGJbGaai4BaiaacohacaaIYaGa amiCaiabgkHiTiaaigdaa8aabaWdbiaaikdacaWGWbWaaeWaa8aaba WdbiGacohacaGGPbGaaiOBa8aadaahaaWcbeqaa8qacaaIYaaaaOWd aiaadchapeGaeyOeI0IaamiCa8aadaahaaWcbeqaa8qacaaIYaaaaa GccaGLOaGaayzkaaaaa8aadaqiaaqaaiaadghaaiaawkWaamaaBaaa leaacaaIYaaabeaakiabgkHiT8qadaWcaaWdaeaapeGaci4CaiaacM gacaGGUbGaaGOmaiaadchacqGHsislcaaIYaGaamiCaaWdaeaapeGa aGOmaiaadchadaqadaWdaeaapeGaci4CaiaacMgacaGGUbWdamaaCa aaleqabaWdbiaaikdaaaGcpaGaamiCa8qacqGHsislcaWGWbWdamaa CaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaaaaWdamaaHaaaba GaamyCaaGaayPadaWaaSbaaSqaaiaaigdaaeqaaOGaaiilaaaaaa@CC4F@                            (4.4)

а величины образов нормальных и касательных напряжений q ^ 2 , q ^ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqiaaqaaiaadghaaiaawkWaamaaBaaaleaaca aIYaaabeaakabaaaaaaaaapeGaaiila8aadaqiaaqaaiaadghaaiaa wkWaamaaBaaaleaacaaIXaaabeaaaaa@3732@ , действую­щих на линии продолжения трещины, найдены в работе [35] и имеют вид:

   q ^ 1 = 1 h 1 + H 1 + 2 π 1/2 T=2 sin 2 p p 2 sin2p2p 1 h 1 H 1 2 π 1/2 T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqiaaqaaiaadghaaiaawkWaamaaBaaaleaaca aIXaaabeaakiabg2da9maalaaabaGaaGymaaqaaiaadIgadaqhaaWc baGaaGymaaqaaiabgUcaRaaakiaadIeadaqhaaWcbaGaaGymaaqaai abgUcaRaaaaaGcdaWcaaqaamaakaaabaGaaGOmaaWcbeaaaOqaaiab ec8aWnaaCaaaleqabaGaaGymaiaac+cacaaIYaaaaaaakiaadsfacq GH9aqpcqGHsislcaaIYaaeaaaaaaaaa8qadaWcaaWdaeaapeGaci4C aiaacMgacaGGUbWdamaaCaaaleqabaWdbiaaikdaaaGcpaGaamiCa8 qacqGHsislcaWGWbWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWd biGacohacaGGPbGaaiOBaiaaikdapaGaamiCa8qacqGHsislcaaIYa GaamiCaaaapaWaaSaaaeaacaaIXaaabaGaamiAamaaDaaaleaacaaI XaaabaGaeyOeI0caaOGaamisamaaDaaaleaacaaIXaaabaGaeyOeI0 caaaaakmaalaaabaWaaOaaaeaacaaIYaaaleqaaaGcbaGaeqiWda3a aWbaaSqabeaacaaIXaGaai4laiaaikdaaaaaaOGaamivaaaa@5F5D@ ,                                         (4.5)

q ^ 2 = 1 h 2 + H 2 + 6 π 3/2 Mp=2 sin 2 p p 2 sin2p+2p 1 h 2 H 2 6 π 3/2 Mp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqiaaqaaiaadghaaiaawkWaamaaBaaaleaaca aIYaaabeaakiabg2da9maalaaabaGaaGymaaqaaiaadIgadaqhaaWc baGaaGOmaaqaaiabgUcaRaaakiaadIeadaqhaaWcbaGaaGOmaaqaai abgUcaRaaaaaGcdaWcaaqaamaakaaabaGaaGOnaaWcbeaaaOqaaiab ec8aWnaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaaaakiaad2eaca WGWbGaeyypa0JaaGOmaabaaaaaaaaapeWaaSaaa8aabaWdbiGacoha caGGPbGaaiOBa8aadaahaaWcbeqaa8qacaaIYaaaaOWdaiaadchacq GHsislpeGaamiCa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qa ciGGZbGaaiyAaiaac6gacaaIYaWdaiaadchapeGaey4kaSIaaGOmai aadchaaaWdamaalaaabaGaaGymaaqaaiaadIgadaqhaaWcbaGaaGOm aaqaaiabgkHiTaaakiaadIeadaqhaaWcbaGaaGOmaaqaaiabgkHiTa aaaaGcdaWcaaqaamaakaaabaGaaGOnaaWcbeaaaOqaaiabec8aWnaa CaaaleqabaGaaG4maiaac+cacaaIYaaaaaaakiaad2eacaWGWbaaaa@6052@ ,                                      (4.6)

  h 1 + p = Γ 1+p/π Γ 1/2+p/π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGObWaa0baaSqaaiaaigdaaeaacqGHRaWkaa GcdaqadaqaaiaadchaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiab fo5ahnaabmaabaGaaGymaiabgUcaRiaadchacaGGVaGaeqiWdahaca GLOaGaayzkaaaabaGaeu4KdC0aaeWaaeaacaaIXaGaai4laiaaikda cqGHRaWkcaWGWbGaai4laiabec8aWbGaayjkaiaawMcaaaaaaaa@48B4@ ,                    (4.7)

  h 1 p = Γ 1/2p/π Γ p/π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGObWaa0baaSqaaiaaigdaaeaacqGHsislaa GcdaqadaqaaiaadchaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiab fo5ahnaabmaabaGaaGymaiaac+cacaaIYaGaeyOeI0IaamiCaiaac+ cacqaHapaCaiaawIcacaGLPaaaaeaacqqHtoWrdaqadaqaaiabgkHi TiaadchacaGGVaGaeqiWdahacaGLOaGaayzkaaaaaaaa@481A@ ,                    (4.8)

  H 1 ± p =exp 1 2π ln 1 2 tht sh2t2t sh 2 t t 2 dt itp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGibWaa0baaSqaaiaaigdaaeaacqGHXcqSaa GcdaqadaqaaiaadchaaiaawIcacaGLPaaacqGH9aqpciGGLbGaaiiE aiaacchadaWadaqaaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacq aHapaCaaWaa8qCaeaacaGGSbGaaiOBamaabmaabaWaaSaaaeaacaaI XaaabaGaaGOmaaaaciGG0bGaaiiAaiaadshadaWcaaqaaiGacohaca GGObGaaGOmaiaadshacqGHsislcaaIYaGaamiDaaqaaiGacohacaGG ObWaaWbaaSqabeaacaaIYaaaaOGaamiDaiabgkHiTiaadshadaahaa WcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaWaaSaaaeaacaWGKbGa amiDaaqaaiaadMgacaWG0bGaeyOeI0IaamiCaaaaaSqaaiabgkHiTi abg6HiLcqaaiabg6HiLcqdcqGHRiI8aaGccaGLBbGaayzxaaaaaa@61FD@ ,                                           (4.9)

  h 2 + p = Γ 1+p/π Γ 1/2+p/π 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGObWaa0baaSqaaiaaikdaaeaacqGHRaWkaa GcdaqadaqaaiaadchaaiaawIcacaGLPaaacqGH9aqpdaWadaqaamaa laaabaGaeu4KdC0aaeWaaeaacaaIXaGaey4kaSIaamiCaiaac+cacq aHapaCaiaawIcacaGLPaaaaeaacqqHtoWrdaqadaqaaiaaigdacaGG VaGaaGOmaiabgUcaRiaadchacaGGVaGaeqiWdahacaGLOaGaayzkaa aaaaGaay5waiaaw2faamaaCaaaleqabaGaaG4maaaaaaa@4B91@ ,             (4.10)

  h 2 p = Γ 1/2p/π Γ p/π 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGObWaa0baaSqaaiaaikdaaeaacqGHsislaa GcdaqadaqaaiaadchaaiaawIcacaGLPaaacqGH9aqpdaWadaqaamaa laaabaGaeu4KdC0aaeWaaeaacaaIXaGaai4laiaaikdacqGHsislca WGWbGaai4laiabec8aWbGaayjkaiaawMcaaaqaaiabfo5ahnaabmaa baGaeyOeI0IaamiCaiaac+cacqaHapaCaiaawIcacaGLPaaaaaaaca GLBbGaayzxaaWaaWbaaSqabeaacaaIZaaaaaaa@4AF7@ ,             (4.11)

  H 2 ± p =exp 1 2π ln 1 2 th 3 t sh2t+2t sh 2 t t 2 dt itp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGibWaa0baaSqaaiaaikdaaeaacqGHXcqSaa GcdaqadaqaaiaadchaaiaawIcacaGLPaaacqGH9aqpciGGLbGaaiiE aiaacchadaWadaqaaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacq aHapaCaaWaa8qCaeaacaGGSbGaaiOBamaabmaabaWaaSaaaeaacaaI XaaabaGaaGOmaaaaciGG0bGaaiiAamaaCaaaleqabaGaaG4maaaaki aadshadaWcaaqaaiGacohacaGGObGaaGOmaiaadshacqGHRaWkcaaI YaGaamiDaaqaaiGacohacaGGObWaaWbaaSqabeaacaaIYaaaaOGaam iDaiabgkHiTiaadshadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGa ayzkaaWaaSaaaeaacaWGKbGaamiDaaqaaiaadMgacaWG0bGaeyOeI0 IaamiCaaaaaSqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8 aaGccaGLBbGaayzxaaaaaa@62E7@ ,                                       (4.12)

где Γ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHtoWraaa@3273@ – гамма-функция Эйлера; индекс ± MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqGHXcqSaaa@32F9@  для H 1 ± , H 2 ± MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGibWaa0baaSqaaiaaigdaaeaacqGHXcqSaa GccaGGSaGaamisamaaDaaaleaacaaIYaaabaGaeyySaelaaaaa@390B@  в (4.12) определяется положением точки p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGWbaaaa@3200@ относительно мнимой оси. В формулах (4.5), (4.6) вторые равенства получены исходя из связей между величинами h k + H k + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGObWaa0baaSqaaiaadUgaaeaacqGHRaWkaa GccaWGibWaa0baaSqaaiaadUgaaeaacqGHRaWkaaaaaa@36CC@  и h k H k k=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGObWaa0baaSqaaiaadUgaaeaacqGHsislaa GccaWGibWaa0baaSqaaiaadUgaaeaacqGHsislaaGccaaMc8UaaGPa VpaabmaabaGaam4Aaiabg2da9iaaigdacaGGSaGaaGOmaaGaayjkai aawMcaaaaa@3FA8@  [35], которые в используемых обозначениях записываются как

  h 1 + H 1 + h 1 H 1 =2 sin2p2p sin 2 p p 2 ; h 2 + H 2 + h 2 H 2 =2 sin2p+2p sin 2 p p 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaaiaadIgadaqhaaWcbaGaaGymaaqaai abgUcaRaaakiaadIeadaqhaaWcbaGaaGymaaqaaiabgUcaRaaaaOqa aiaadIgadaqhaaWcbaGaaGymaaqaaiabgkHiTaaakiaadIeadaqhaa WcbaGaaGymaaqaaiabgkHiTaaaaaGccqGH9aqpcqGHsislcaaIYaae aaaaaaaaa8qadaWcaaWdaeaapeGaci4CaiaacMgacaGGUbGaaGOma8 aacaWGWbWdbiabgkHiTiaaikdacaWGWbaapaqaa8qaciGGZbGaaiyA aiaac6gapaWaaWbaaSqabeaapeGaaGOmaaaak8aacaWGWbWdbiabgk HiTiaadchapaWaaWbaaSqabeaapeGaaGOmaaaaaaGcpaGaaGPaVlaa cUdacaaMc8UaaGPaVlaaykW7daWcaaqaaiaadIgadaqhaaWcbaGaaG OmaaqaaiabgUcaRaaakiaadIeadaqhaaWcbaGaaGOmaaqaaiabgUca RaaaaOqaaiaadIgadaqhaaWcbaGaaGOmaaqaaiabgkHiTaaakiaadI eadaqhaaWcbaGaaGOmaaqaaiabgkHiTaaaaaGccqGH9aqpcaaIYaWd bmaalaaapaqaa8qaciGGZbGaaiyAaiaac6gacaaIYaWdaiaadchacq GHRaWkpeGaaGOmaiaadchaa8aabaWdbiGacohacaGGPbGaaiOBa8aa daahaaWcbeqaa8qacaaIYaaaaOWdaiaadchapeGaeyOeI0IaamiCa8 aadaahaaWcbeqaa8qacaaIYaaaaaaaaaa@7174@ .                                            (4.13)

Образы производных смещений (например, [35]):

   E ¯ u ^ 1 ' p, x 2 = 2 F ^ x 2 2 ν ¯ p 2 F ^ , E ¯ u ^ 2 ' p, x 2 = 2+ ν ¯ p F ^ x 2 1 p 3 F ^ x 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaceWGfbGbaebadaqiaaqaaiaadwhaaiaawkWaam aaBaaaleaacaaIXaaabeaakiaacEcadaqadaqaaiaadchacaGGSaGa amiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabg2da9m aalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGabmOrayaajaaa baGaeyOaIyRaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaaGccq GHsislcuaH9oGBgaqeaiaadchadaahaaWcbeqaaiaaikdaaaGcdaqi aaqaaiaadAeaaiaawkWaaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlqadweagaqeamaaHaaabaGaamyD aaGaayPadaWaaSbaaSqaaiaaikdaaeqaaOGaai4jamaabmaabaGaam iCaiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzk aaGaeyypa0JaeyOeI0YaaeWaaeaacaaIYaGaey4kaSIafqyVd4Mbae baaiaawIcacaGLPaaacaWGWbWaaSaaaeaacqGHciITdaqiaaqaaiaa dAeaaiaawkWaaaqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqaba aaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaamiCaaaadaWcaaqaaiab gkGi2oaaCaaaleqabaGaaG4maaaakmaaHaaabaGaamOraaGaayPada aabaGaeyOaIyRaamiEamaaDaaaleaacaaIYaaabaGaaG4maaaaaaaa aa@7833@ .     (4.14)

Подстановка (4.4) в (4.3), а затем в (4.14) дает

  E ¯ u ^ 1 ' p, x 2 = 1 sin 2 p p 2 B 11 q ^ 1 + B 12 q ^ 2 E ¯ u ^ 2 ' p, x 2 = 1 sin 2 p p 2 B 21 q ^ 1 + B 22 q ^ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiqadweagaqeamaaHaaabaGaamyDaaGaay PadaWaaSbaaSqaaiaaigdaaeqaaOGaai4jamaabmaabaGaamiCaiaa cYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey ypa0deaaaaaaaaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaci4C aiaacMgacaGGUbWdamaaCaaaleqabaWdbiaaikdaaaGcpaGaamiCa8 qacqGHsislcaWGWbWdamaaCaaaleqabaWdbiaaikdaaaaaaOWaaeWa aeaacaWGcbWaaSbaaSqaaiaaigdacaaIXaaabeaak8aadaqiaaqaai aadghaaiaawkWaamaaBaaaleaacaaIXaaabeaakiabgUcaR8qacaWG cbWaaSbaaSqaaiaaigdacaaIYaaabeaak8aadaqiaaqaaiaadghaai aawkWaamaaBaaaleaacaaIYaaabeaaaOWdbiaawIcacaGLPaaaaeaa paGabmyrayaaraWaaecaaeaacaWG1baacaGLcmaadaWgaaWcbaGaaG OmaaqabaGccaGGNaWaaeWaaeaacaWGWbGaaiilaiaadIhadaWgaaWc baGaaGOmaaqabaaakiaawIcacaGLPaaacqGH9aqppeWaaSaaa8aaba Wdbiaaigdaa8aabaWdbiGacohacaGGPbGaaiOBa8aadaahaaWcbeqa a8qacaaIYaaaaOWdaiaadchapeGaeyOeI0IaamiCa8aadaahaaWcbe qaa8qacaaIYaaaaaaakmaabmaabaGaamOqamaaBaaaleaacaaIYaGa aGymaaqabaGcpaWaaecaaeaacaWGXbaacaGLcmaadaWgaaWcbaGaaG ymaaqabaGccqGHRaWkpeGaamOqamaaBaaaleaacaaIYaGaaGOmaaqa baGcpaWaaecaaeaacaWGXbaacaGLcmaadaWgaaWcbaGaaGOmaaqaba aak8qacaGLOaGaayzkaaGaaiOlaaaaaa@727B@                                                       (4.15)

где

     B 11 p =sinp 2 x 2 + 1 p 2 1+ ν ¯ 1 x 2 sinp x 2 1+ ν ¯ 2 p x 2 cosp 2 x 2 p 2 1+ ν ¯ 2 x 2 cosp x 2 , B 12 p = 1 ν ¯ 2 cosp 2 x 2 + 1 ν ¯ 2 + p 2 1+ ν ¯ 1 x 2 cosp x 2 + 1+ ν ¯ 2 p x 2 sinp 2 x 2 p (1 ν ¯ )+ 1+ ν ¯ 2 x 2 sinp x 2 , B 21 p = 1 ν ¯ 2 cosp 2 x 2 1 ν ¯ 2 + p 2 1+ ν ¯ 1 x 2 cosp x 2 p x 2 1+ ν ¯ 2 sinp 2 x 2 p 1 ν ¯ + x 2 1+ ν ¯ 2 sinp x 2 , B 22 p =sinp 2 x 2 + 1 p 2 1+ ν ¯ 1 x 2 sinp x 2 + p x 2 1+ ν ¯ 2 cosp 2 x 2 +p 2 x 2 1+ ν ¯ 2 cosp x 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaaceqaaiaadkeadaWgaaWcbaGaaGymaiaaigdaae qaaOaeaaaaaaaaa8qadaqadaqaa8aacaWGWbaapeGaayjkaiaawMca a8aacqGH9aqppeGaci4CaiaacMgacaGGUbGaamiCamaabmaapaqaa8 qacaaIYaGaeyOeI0IaamiEa8aadaWgaaWcbaWdbiaaikdaa8aabeaa aOWdbiaawIcacaGLPaaacqGHRaWkdaqadaWdaeaapeGaaGymaiabgk HiTiaadchapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qa caaIXaGaey4kaSYdaiqbe27aUzaaraaapeGaayjkaiaawMcaamaabm aapaqaa8qacaaIXaGaeyOeI0IaamiEa8aadaWgaaWcbaWdbiaaikda a8aabeaaaOWdbiaawIcacaGLPaaaaiaawIcacaGLPaaaciGGZbGaai yAaiaac6gacaWGWbGaamiEa8aadaWgaaWcbaWdbiaaikdaa8aabeaa kiabgkHiTaqaa8qadaWcaaqaaiaaigdacqGHRaWkpaGafqyVd4Mbae baa8qabaGaaGOmaaaacaWGWbGaamiEa8aadaWgaaWcbaWdbiaaikda a8aabeaak8qaciGGJbGaai4BaiaacohacaWGWbWaaeWaa8aabaWdbi aaikdacqGHsislcaWG4bWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGc peGaayjkaiaawMcaaiabgkHiTiaadchadaqadaWdaeaapeGaaGOmai abgkHiTmaalaaabaGaaGymaiabgUcaR8aacuaH9oGBgaqeaaWdbeaa caaIYaaaaiaadIhapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qaca GLOaGaayzkaaGaci4yaiaac+gacaGGZbGaamiCaiaadIhapaWaaSba aSqaa8qacaaIYaaapaqabaGccaGGSaaabaGaamOqamaaBaaaleaaca aIXaGaaGOmaaqabaGcpeWaaeWaaeaapaGaamiCaaWdbiaawIcacaGL PaaapaGaeyypa0JaeyOeI0YdbmaalaaabaGaaGymaiabgkHiT8aacu aH9oGBgaqeaaWdbeaacaaIYaaaaiGacogacaGGVbGaai4Caiaadcha daqadaWdaeaapeGaaGOmaiabgkHiTiaadIhapaWaaSbaaSqaa8qaca aIYaaapaqabaaak8qacaGLOaGaayzkaaGaey4kaSYaaeWaa8aabaWd bmaalaaabaGaaGymaiabgkHiT8aacuaH9oGBgaqeaaWdbeaacaaIYa aaaiabgUcaRiaadchapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaa paqaa8qacaaIXaGaey4kaSYdaiqbe27aUzaaraaapeGaayjkaiaawM caamaabmaapaqaa8qacaaIXaGaeyOeI0IaamiEa8aadaWgaaWcbaWd biaaikdaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawIcacaGLPaaaci GGJbGaai4BaiaacohacaWGWbGaamiEa8aadaWgaaWcbaWdbiaaikda a8aabeaakiabgUcaRaqaa8qadaWcaaqaaiaaigdacqGHRaWkpaGafq yVd4Mbaebaa8qabaGaaGOmaaaacaWGWbGaamiEa8aadaWgaaWcbaWd biaaikdaa8aabeaak8qaciGGZbGaaiyAaiaac6gacaWGWbWaaeWaa8 aabaWdbiaaikdacqGHsislcaWG4bWdamaaBaaaleaapeGaaGOmaaWd aeqaaaGcpeGaayjkaiaawMcaaiabgkHiTiaadchadaqadaWdaeaape GaaiikaiaaigdacqGHsislpaGafqyVd4MbaebapeGaaiykaiabgUca RmaalaaabaGaaGymaiabgUcaR8aacuaH9oGBgaqeaaWdbeaacaaIYa aaaiaadIhapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGa ayzkaaGaci4CaiaacMgacaGGUbGaamiCaiaadIhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGccaGGSaaabaGaamOqamaaBaaaleaacaaIYaGa aGymaaqabaGcpeWaaeWaaeaapaGaamiCaaWdbiaawIcacaGLPaaapa Gaeyypa0ZdbmaalaaabaGaaGymaiabgkHiT8aacuaH9oGBgaqeaaWd beaacaaIYaaaaiGacogacaGGVbGaai4CaiaadchadaqadaWdaeaape GaaGOmaiabgkHiTiaadIhapaWaaSbaaSqaa8qacaaIYaaapaqabaaa k8qacaGLOaGaayzkaaGaeyOeI0YaaeWaa8aabaWdbmaalaaabaGaaG ymaiabgkHiT8aacuaH9oGBgaqeaaWdbeaacaaIYaaaaiabgUcaRiaa dchapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXa Gaey4kaSYdaiqbe27aUzaaraaapeGaayjkaiaawMcaamaabmaapaqa a8qacaaIXaGaeyOeI0IaamiEa8aadaWgaaWcbaWdbiaaikdaa8aabe aaaOWdbiaawIcacaGLPaaaaiaawIcacaGLPaaaciGGJbGaai4Baiaa cohacaWGWbGaamiEa8aadaWgaaWcbaWdbiaaikdaa8aabeaakiabgk HiTaqaa8qacaWGWbGaamiEa8aadaWgaaWcbaWdbiaaikdaa8aabeaa k8qadaWcaaqaaiaaigdacqGHRaWkpaGafqyVd4Mbaebaa8qabaGaaG OmaaaaciGGZbGaaiyAaiaac6gacaWGWbWaaeWaa8aabaWdbiaaikda cqGHsislcaWG4bWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaay jkaiaawMcaaiabgkHiTiaadchadaqadaWdaeaapeGaaGymaiabgkHi T8aacuaH9oGBgaqea8qacqGHRaWkcaWG4bWdamaaBaaaleaapeGaaG OmaaWdaeqaaOWdbmaalaaabaGaaGymaiabgUcaR8aacuaH9oGBgaqe aaWdbeaacaaIYaaaaaGaayjkaiaawMcaaiGacohacaGGPbGaaiOBai aadchacaWG4bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOGaaiilaaqa aiaadkeadaWgaaWcbaGaaGOmaiaaikdaaeqaaOWdbmaabmaabaWdai aadchaa8qacaGLOaGaayzkaaWdaiabg2da98qaciGGZbGaaiyAaiaa c6gacaWGWbWaaeWaa8aabaWdbiaaikdacqGHsislcaWG4bWdamaaBa aaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgUcaRmaa bmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaahaaWcbeqaa8qaca aIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHRaWkpaGafqyVd4Mbaeba a8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaaigdacqGHsislcaWG4b WdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaaGa ayjkaiaawMcaaiGacohacaGGPbGaaiOBaiaadchacaWG4bWdamaaBa aaleaapeGaaGOmaaWdaeqaaOGaey4kaScabaWdbiaadchacaWG4bWd amaaBaaaleaapeGaaGOmaaWdaeqaaOWdbmaalaaabaGaaGymaiabgU caR8aacuaH9oGBgaqeaaWdbeaacaaIYaaaaiGacogacaGGVbGaai4C aiaadchadaqadaWdaeaapeGaaGOmaiabgkHiTiaadIhapaWaaSbaaS qaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaey4kaSIaamiC amaabmaapaqaa8qacaaIYaGaeyOeI0IaamiEa8aadaWgaaWcbaWdbi aaikdaa8aabeaak8qadaWcaaqaaiaaigdacqGHRaWkpaGafqyVd4Mb aebaa8qabaGaaGOmaaaaaiaawIcacaGLPaaaciGGJbGaai4Baiaaco hacaWGWbGaamiEa8aadaWgaaWcbaWdbiaaikdaa8aabeaakiaac6ca aaaa@72B6@  (4.16)

Данные формулы существенно упрощаются для берегов трещины x 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0 JaaGimaaaa@34BA@ :

  B 11 =sin2p2p, B 12 = 1 ν ¯ sin 2 p p 2 +2 p 2 , B 21 = 1 ν ¯ sin 2 p p 2 2 p 2 , B 22 =sin2p+2p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaadkeadaWgaaWcbaGaaGymaiaaigdaae qaaOGaeyypa0deaaaaaaaaa8qaciGGZbGaaiyAaiaac6gacaaIYaGa amiCaiabgkHiTiaaikdacaWGWbGaaiilaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8+daiaadkeadaWgaaWcbaGa aGymaiaaikdaaeqaaOGaeyypa0ZdbmaabmaabaGaaGymaiabgkHiT8 aacuaH9oGBgaqeaaWdbiaawIcacaGLPaaadaqadaqaaiGacohacaGG PbGaaiOBa8aadaahaaWcbeqaa8qacaaIYaaaaOWdaiaadchacqGHsi slpeGaamiCa8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzk aaGaey4kaSIaaGOmaiaadchapaWaaWbaaSqabeaapeGaaGOmaaaaki aacYcaaeaapaGaamOqamaaBaaaleaacaaIYaGaaGymaaqabaGccqGH 9aqpcqGHsislpeWaaeWaaeaacaaIXaGaeyOeI0Ydaiqbe27aUzaara aapeGaayjkaiaawMcaamaabmaabaGaci4CaiaacMgacaGGUbWdamaa CaaaleqabaWdbiaaikdaaaGcpaGaamiCaiabgkHiT8qacaWGWbWdam aaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaacqGHsislcaaI YaGaamiCa8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiilaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8+daiaadkeadaWgaaWcbaGaaGOmaiaa ikdaaeqaaOGaeyypa0ZdbiGacohacaGGPbGaaiOBaiaaikdacaWGWb Gaey4kaSIaaGOmaiaadchaaaaa@8950@                                  (4.17)

и для внешней границы x 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0 JaaGymaaaa@34BB@ :

  B 11 =2 sinppcosp , B 12 =2psinp, B 21 =2psinp, B 22 =2 sinp+pcosp . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaadkeadaWgaaWcbaGaaGymaiaaigdaae qaaOGaeyypa0JaaGOmamaabmaabaaeaaaaaaaaa8qaciGGZbGaaiyA aiaac6gacaWGWbGaeyOeI0IaamiCaiGacogacaGGVbGaai4Caiaadc haa8aacaGLOaGaayzkaaWdbiaacYcacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaV=aacaWGcbWaaSbaaSqaaiaaig dacaaIYaaabeaakiabg2da9iabgkHiT8qacaaIYaGaamiCaiaaykW7 ciGGZbGaaiyAaiaac6gacaWGWbGaaiilaaqaa8aacaWGcbWaaSbaaS qaaiaaikdacaaIXaaabeaakiabg2da9iabgkHiT8qacaaIYaGaamiC aiaaykW7ciGGZbGaaiyAaiaac6gacaWGWbGaaiilaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8+daiaadkeadaWgaaWcbaGaaGOmaiaaikda aeqaaOGaeyypa0JaaGOmamaabmaabaWdbiGacohacaGGPbGaaiOBai aadchacqGHRaWkcaWGWbGaci4yaiaac+gacaGGZbGaamiCaaWdaiaa wIcacaGLPaaacaGGUaaaaaa@7DCE@                                                       (4.18)

Выражения (4.17) с точностью до обозначений совпадают с выражениями, полученными в работе [35], выражения B 12 , B 22 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGcbWaaSbaaSqaaiaaigdacaaIYaaabeaaka baaaaaaaaapeGaaiila8aacaWGcbWaaSbaaSqaaiaaikdacaaIYaaa beaaaaa@36C8@  из (4.18) – с выражениями, полученными в работе [52].

Подстановка первых равенств (4.5), (4.6) в (4.15) дает выражения искомых образов производных смещений:

     E ¯ u ^ 1 ' p, x 2 = 1 sin 2 p p 2 B 11 1 h 1 + H 1 + 2 π 1/2 T+ B 12 1 h 2 + H 2 + 6 π 3/2 Mp E ¯ u ^ 2 ' p, x 2 = 1 sin 2 p p 2 B 21 1 h 1 + H 1 + 2 π 1/2 T+ B 22 1 h 2 + H 2 + 6 π 3/2 Mp . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiqadweagaqeamaaHaaabaGaamyDaaGaay PadaWaaSbaaSqaaiaaigdaaeqaaOGaai4jamaabmaabaGaamiCaiaa cYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey ypa0deaaaaaaaaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaci4C aiaacMgacaGGUbWdamaaCaaaleqabaWdbiaaikdaaaGcpaGaamiCa8 qacqGHsislcaWGWbWdamaaCaaaleqabaWdbiaaikdaaaaaaOWaaeWa aeaacaWGcbWaaSbaaSqaaiaaigdacaaIXaaabeaak8aadaWcaaqaai aaigdaaeaacaWGObWaa0baaSqaaiaaigdaaeaacqGHRaWkaaGccaWG ibWaa0baaSqaaiaaigdaaeaacqGHRaWkaaaaaOWaaSaaaeaadaGcaa qaaiaaikdaaSqabaaakeaacqaHapaCdaahaaWcbeqaaiaaigdacaGG VaGaaGOmaaaaaaGccaWGubGaey4kaSYdbiaadkeadaWgaaWcbaGaaG ymaiaaikdaaeqaaOWdamaalaaabaGaaGymaaqaaiaadIgadaqhaaWc baGaaGOmaaqaaiabgUcaRaaakiaadIeadaqhaaWcbaGaaGOmaaqaai abgUcaRaaaaaGcdaWcaaqaamaakaaabaGaaGOnaaWcbeaaaOqaaiab ec8aWnaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaaaakiaad2eaca WGWbaapeGaayjkaiaawMcaaaqaa8aaceWGfbGbaebadaqiaaqaaiaa dwhaaiaawkWaamaaBaaaleaacaaIYaaabeaakiaacEcadaqadaqaai aadchacaGGSaGaamiEamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaa wMcaaiabg2da98qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaci4Cai aacMgacaGGUbWdamaaCaaaleqabaWdbiaaikdaaaGcpaGaamiCa8qa cqGHsislcaWGWbWdamaaCaaaleqabaWdbiaaikdaaaaaaOWaaeWaae aacaWGcbWaaSbaaSqaaiaaikdacaaIXaaabeaak8aadaWcaaqaaiaa igdaaeaacaWGObWaa0baaSqaaiaaigdaaeaacqGHRaWkaaGccaWGib Waa0baaSqaaiaaigdaaeaacqGHRaWkaaaaaOWaaSaaaeaadaGcaaqa aiaaikdaaSqabaaakeaacqaHapaCdaahaaWcbeqaaiaaigdacaGGVa GaaGOmaaaaaaGccaWGubGaey4kaSYdbiaadkeadaWgaaWcbaGaaGOm aiaaikdaaeqaaOWdamaalaaabaGaaGymaaqaaiaadIgadaqhaaWcba GaaGOmaaqaaiabgUcaRaaakiaadIeadaqhaaWcbaGaaGOmaaqaaiab gUcaRaaaaaGcdaWcaaqaamaakaaabaGaaGOnaaWcbeaaaOqaaiabec 8aWnaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaaaakiaad2eacaWG WbaapeGaayjkaiaawMcaaiaac6caaaaa@9A15@    (4.19)

Подстановка вторых равенств (4.5), (4.6) в (4.15) дает альтернативные выражения искомых образов производных смещений:

E ¯ u ^ 1 ' p, x 2 = 2 sin2p2p B 11 1 h 1 H 1 2 π 1/2 T+ 2 sin2p+2p B 12 1 h 2 H 2 6 π 3/2 Mp E ¯ u ^ 2 ' p, x 2 = 2 sin2p2p B 21 1 h 1 H 1 2 π 1/2 T+ 2 sin2p+2p B 22 1 h 2 H 2 6 π 3/2 Mp. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiqadweagaqeamaaHaaabaGaamyDaaGaay PadaWaaSbaaSqaaiaaigdaaeqaaOGaai4jamaabmaabaGaamiCaiaa cYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey ypa0deaaaaaaaaa8qadaWcaaWdaeaacaaIYaaabaWdbiGacohacaGG PbGaaiOBaiaaikdapaGaamiCa8qacqGHsislcaaIYaGaamiCaaaaca WGcbWaaSbaaSqaaiaaigdacaaIXaaabeaak8aadaWcaaqaaiaaigda aeaacaWGObWaa0baaSqaaiaaigdaaeaacqGHsislaaGccaWGibWaa0 baaSqaaiaaigdaaeaacqGHsislaaaaaOWaaSaaaeaadaGcaaqaaiaa ikdaaSqabaaakeaacqaHapaCdaahaaWcbeqaaiaaigdacaGGVaGaaG OmaaaaaaGccaWGubGaey4kaSYdbmaalaaapaqaaiaaikdaaeaapeGa ci4CaiaacMgacaGGUbGaaGOma8aacaWGWbGaey4kaSYdbiaaikdaca WGWbaaaiaadkeadaWgaaWcbaGaaGymaiaaikdaaeqaaOWdamaalaaa baGaaGymaaqaaiaadIgadaqhaaWcbaGaaGOmaaqaaiabgkHiTaaaki aadIeadaqhaaWcbaGaaGOmaaqaaiabgkHiTaaaaaGcdaWcaaqaamaa kaaabaGaaGOnaaWcbeaaaOqaaiabec8aWnaaCaaaleqabaGaaG4mai aac+cacaaIYaaaaaaakiaad2eacaWGWbaapeqaa8aaceWGfbGbaeba daqiaaqaaiaadwhaaiaawkWaamaaBaaaleaacaaIYaaabeaakiaacE cadaqadaqaaiaadchacaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa aOGaayjkaiaawMcaaiabg2da98qadaWcaaWdaeaacaaIYaaabaWdbi GacohacaGGPbGaaiOBaiaaikdapaGaamiCaiabgkHiT8qacaaIYaGa amiCaaaacaWGcbWaaSbaaSqaaiaaikdacaaIXaaabeaak8aadaWcaa qaaiaaigdaaeaacaWGObWaa0baaSqaaiaaigdaaeaacqGHsislaaGc caWGibWaa0baaSqaaiaaigdaaeaacqGHsislaaaaaOWaaSaaaeaada GcaaqaaiaaikdaaSqabaaakeaacqaHapaCdaahaaWcbeqaaiaaigda caGGVaGaaGOmaaaaaaGccaWGubGaey4kaSYdbmaalaaapaqaaiaaik daaeaapeGaci4CaiaacMgacaGGUbGaaGOma8aacaWGWbGaey4kaSYd biaaikdacaWGWbaaaiaadkeadaWgaaWcbaGaaGOmaiaaikdaaeqaaO WdamaalaaabaGaaGymaaqaaiaadIgadaqhaaWcbaGaaGOmaaqaaiab gkHiTaaakiaadIeadaqhaaWcbaGaaGOmaaqaaiabgkHiTaaaaaGcda WcaaqaamaakaaabaGaaGOnaaWcbeaaaOqaaiabec8aWnaaCaaaleqa baGaaG4maiaac+cacaaIYaaaaaaakiaad2eacaWGWbGaaiOlaaaaaa@A603@    (4.20)

Оригиналы производных смещений находятся с помощью обратного преобразования Лапласа (4.2), подынтегральные выражения для которых содержат коэффициент e px MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGLbWaaWbaaSqabeaacaWGWbGaamiEaaaaaa a@3413@ . Для обеспечения сходимости удобно рассматривать область Rep<0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaciGGsbGaaiyzaiaadchacqGH8aapcaaIWaaaaa@357F@  и, следовательно, представление (4.20), при вычислении значений, соответствующих x 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOpa4 JaaGimaaaa@34BB@ , и область Rep>0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaciGGsbGaaiyzaiaadchacqGH+aGpcaaIWaaaaa@3583@ , и представление (4.19) при вычислении значений, соответствующих x 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyipaW JaaGimaaaa@34B6@ . Вычисление оригиналов можно осуществлять непосредственно, используя интегральное представление (пункт 4.2), с помощью вычетов (пункт 4.3) либо с помощью исследования асимптотических представлений окрестности вершины трещины (пункт 4.4).

4.2. Представление производных смещений через интегралы. Оригиналы производных смещений находятся подстановкой (4.19) либо (4.20) в (4.20) для x 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyipaW JaaGimaaaa@34B6@  и x 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOpa4 JaaGimaaaa@34BB@ соответственно. Контур интегрирования при этом может деформироваться согласно правилам вычисления интегралов на комплексной плоскости. В качестве контура можно выбрать

  p=is± γ+β s 2 α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGWbGaeyypa0JaamyAaiaaykW7caWGZbGaey ySae7aaOqaaeaacqaHZoWzcqGHRaWkcqaHYoGycaaMc8Uaam4Camaa CaaaleqabaGaaGOmaaaaaeaacqaHXoqyaaaaaa@41A9@ ,                               (4.21)

где α,β,γ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHXoqycaqGSaGaaGPaVlaaykW7cqaHYoGyca qGSaGaaGPaVlaaykW7cqaHZoWzaaa@3D7C@ – некоторые константы, выбираемые так, чтобы контуры (4.21) охватывали все полюса подынтегральной функции. Здесь знаки плюс/минус соответствуют представлениям (4.19) либо (4.20) соответственно. При β = 0 контуры превращаются в прямые линии, параллельные мнимой оси. Для функции sin 2 p p 2 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiGacohacaGGPbGaaiOBamaaCaaale qabaGaaGOmaaaakiaadchacqGHsislcaWGWbWaaWbaaSqabeaacaaI YaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaa aa@3BFD@  ближайший к мнимой оси полюс, p 1 4.21239±2.2507i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGWbWaaSbaaSqaaiaaigdaaeqaaOGaeyisIS leaaaaaaaaa8qacaaI0aGaaiOlaiaaikdacaaIXaGaaGOmaiaaioda caaI5aGaaGPcVlaaykW7caaMc8UaeyySaeRaaGOmaiaac6cacaaIYa GaaGynaiaaicdacaaI3aGaamyAaaaa@45CE@ ***TRANSLATION ERROR***, следовательно, 0< γ α <Re p 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaaIWaGaeyipaWZaaOqaaeaacqaHZoWzaSqaai abeg7aHbaakiabgYda8iGackfacaGGLbGaamiCamaaBaaaleaacaaI Xaaabeaaaaa@3AD5@ .

Выражения для производных смещений приобретают вид для x 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyipaW JaaGimaaaa@34B6@ :

E ¯ M u 1,1 M x 1 0 , x 2 0 =12 x 2 0 1 2 + 1 2πi 6 π 3/2 + 1 sin 2 p p 2 B 12 p p h 2 + p H 2 + p dp ds e p x 1 ds , E ¯ M u 2,1 M x 1 0 , x 2 0 =12 x 1 0 δ + 1 2πi 6 π 3/2 + 1 sin 2 p p 2 B 22 p p h 2 + p H 2 + p dp ds e p x 1 ds , E ¯ T u 1,1 T x 1 0 , x 2 0 = 46 x 2 0 + 1 2πi 2 π + 1 sin 2 p p 2 B 11 p h 1 + p H 1 + p dp ds e p x 1 ds , E ¯ T u 2,1 T x 1 0 , x 2 0 =6 x 1 0 δ m + 1 2πi 2 π + 1 sin 2 p p 2 B 21 p h 1 + p H 1 + p dp ds e p x 1 ds , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaaceqaamaalaaabaGabmyrayaaraaabaGaamytaa aacaWG1bWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaaiaad2eaaaGc daqadaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaicdaaaGccaGGSa GaamiEamaaDaaaleaacaaIYaaabaGaaGimaaaaaOGaayjkaiaawMca aiabg2da9iabgkHiTiaaigdacaaIYaWaaeWaaeaacaWG4bWaa0baaS qaaiaaikdaaeaacaaIWaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGa aGOmaaaaaiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaeqiWdaNaamyAaaaacaaMc8+aaSaaaeaadaGcaaqaaiaaiAda aSqabaaakeaacqaHapaCdaahaaWcbeqaaiaaiodacaGGVaGaaGOmaa aaaaGccaaMc8UaaGPaVpaapehabaWaaSaaaeaacaaIXaaabaGaci4C aiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaamiCaiabgkHiTi aadchadaahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaacaWGcbWaaSba aSqaaiaaigdacaaIYaaabeaakmaabmaabaGaamiCaaGaayjkaiaawM caaiaadchaaeaacaWGObWaa0baaSqaaiaaikdaaeaacqGHRaWkaaGc daqadaqaaiaadchaaiaawIcacaGLPaaacaWGibWaa0baaSqaaiaaik daaeaacqGHRaWkaaGcdaqadaqaaiaadchaaiaawIcacaGLPaaaaaWa aSaaaeaacaWGKbGaamiCaaqaaiaadsgacaWGZbaaaiaadwgadaahaa WcbeqaaiaadchacaWG4bWaaSbaaWqaaiaaigdaaeqaaaaakiaadsga caWGZbaaleaacqGHsislcqGHEisPaeaacqGHRaWkcqGHEisPa0Gaey 4kIipakiaacYcaaeaadaWcaaqaaiqadweagaqeaaqaaiaad2eaaaGa amyDamaaDaaaleaacaaIYaGaaiilaiaaigdaaeaacaWGnbaaaOWaae WaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIWaaaaOGaaiilaiaa dIhadaqhaaWcbaGaaGOmaaqaaiaaicdaaaaakiaawIcacaGLPaaacq GH9aqpcaaIXaGaaGOmamaabmaabaGaamiEamaaDaaaleaacaaIXaaa baGaaGimaaaakiabgkHiTiabes7aKbGaayjkaiaawMcaaiabgUcaRm aalaaabaGaaGymaaqaaiaaikdacqaHapaCcaWGPbaaaiaaykW7daWc aaqaamaakaaabaGaaGOnaaWcbeaaaOqaaiabec8aWnaaCaaaleqaba GaaG4maiaac+cacaaIYaaaaaaakiaaykW7caaMc8+aa8qCaeaadaWc aaqaaiaaigdaaeaaciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaik daaaGccaWGWbGaeyOeI0IaamiCamaaCaaaleqabaGaaGOmaaaaaaGc daWcaaqaaiaadkeadaWgaaWcbaGaaGOmaiaaikdaaeqaaOWaaeWaae aacaWGWbaacaGLOaGaayzkaaGaamiCaaqaaiaadIgadaqhaaWcbaGa aGOmaaqaaiabgUcaRaaakmaabmaabaGaamiCaaGaayjkaiaawMcaai aadIeadaqhaaWcbaGaaGOmaaqaaiabgUcaRaaakmaabmaabaGaamiC aaGaayjkaiaawMcaaaaadaWcaaqaaiaadsgacaWGWbaabaGaamizai aadohaaaGaamyzamaaCaaaleqabaGaamiCaiaadIhadaWgaaadbaGa aGymaaqabaaaaOGaamizaiaadohaaSqaaiabgkHiTiabg6HiLcqaai abgUcaRiabg6HiLcqdcqGHRiI8aOGaaiilaaqaamaalaaabaGabmyr ayaaraaabaGaamivaaaacaWG1bWaa0baaSqaaiaaigdacaGGSaGaaG ymaaqaaiaadsfaaaGcdaqadaqaaiaadIhadaqhaaWcbaGaaGymaaqa aiaaicdaaaGccaGGSaGaamiEamaaDaaaleaacaaIYaaabaGaaGimaa aaaOGaayjkaiaawMcaaiabg2da9iabgkHiTmaabmaabaGaaGinaiab gkHiTiaaiAdacaWG4bWaa0baaSqaaiaaikdaaeaacaaIWaaaaaGcca GLOaGaayzkaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaiabec8a WjaadMgaaaGaaGPaVpaalaaabaWaaOaaaeaacaaIYaaaleqaaaGcba WaaOaaaeaacqaHapaCaSqabaaaaOGaaGPaVlaaykW7daWdXbqaamaa laaabaGaaGymaaqaaiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaG OmaaaakiaadchacqGHsislcaWGWbWaaWbaaSqabeaacaaIYaaaaaaa kmaalaaabaGaamOqamaaBaaaleaacaaIXaGaaGymaaqabaGcdaqada qaaiaadchaaiaawIcacaGLPaaaaeaacaWGObWaa0baaSqaaiaaigda aeaacqGHRaWkaaGcdaqadaqaaiaadchaaiaawIcacaGLPaaacaWGib Waa0baaSqaaiaaigdaaeaacqGHRaWkaaGcdaqadaqaaiaadchaaiaa wIcacaGLPaaaaaWaaSaaaeaacaWGKbGaamiCaaqaaiaadsgacaWGZb aaaiaadwgadaahaaWcbeqaaiaadchacaWG4bWaaSbaaWqaaiaaigda aeqaaaaakiaadsgacaWGZbaaleaacqGHsislcqGHEisPaeaacqGHRa WkcqGHEisPa0Gaey4kIipakiaacYcaaeaadaWcaaqaaiqadweagaqe aaqaaiaadsfaaaGaamyDamaaDaaaleaacaaIYaGaaiilaiaaigdaae aacaWGubaaaOWaaeWaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaI WaaaaOGaaiilaiaadIhadaqhaaWcbaGaaGOmaaqaaiaaicdaaaaaki aawIcacaGLPaaacqGH9aqpcqGHsislcaaI2aWaaeWaaeaacaWG4bWa a0baaSqaaiaaigdaaeaacaaIWaaaaOGaeyOeI0IaeqiTdq2aaSbaaS qaaiaad2gaaeqaaaGccaGLOaGaayzkaaGaey4kaSYaaSaaaeaacaaI XaaabaGaaGOmaiabec8aWjaadMgaaaGaaGPaVpaalaaabaWaaOaaae aacaaIYaaaleqaaaGcbaWaaOaaaeaacqaHapaCaSqabaaaaOGaaGPa VlaaykW7daWdXbqaamaalaaabaGaaGymaaqaaiGacohacaGGPbGaai OBamaaCaaaleqabaGaaGOmaaaakiaadchacqGHsislcaWGWbWaaWba aSqabeaacaaIYaaaaaaakmaalaaabaGaamOqamaaBaaaleaacaaIYa GaaGymaaqabaGcdaqadaqaaiaadchaaiaawIcacaGLPaaaaeaacaWG ObWaa0baaSqaaiaaigdaaeaacqGHRaWkaaGcdaqadaqaaiaadchaai aawIcacaGLPaaacaWGibWaa0baaSqaaiaaigdaaeaacqGHRaWkaaGc daqadaqaaiaadchaaiaawIcacaGLPaaaaaWaaSaaaeaacaWGKbGaam iCaaqaaiaadsgacaWGZbaaaiaadwgadaahaaWcbeqaaiaadchacaWG 4bWaaSbaaWqaaiaaigdaaeqaaaaakiaadsgacaWGZbaaleaacqGHsi slcqGHEisPaeaacqGHRaWkcqGHEisPa0Gaey4kIipakiaacYcaaaaa @6B26@  (4.22)

и для и x 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOpa4 JaaGimaaaa@34BB@

  E ¯ M u 1,1 M x 1 0 , x 2 0 = 1 2πi 6 π 3/2 + 2 sin2p+2p B 12 p p h 2 p H 2 p dp ds e p x 1 ds , E ¯ M u 2,1 M x 1 0 , x 2 0 = 1 2πi 6 π 3/2 + 2 sin2p+2p B 22 p p h 2 p H 2 p dp ds e p x 1 ds , E ¯ T u 1,1 T x 1 0 , x 2 0 = 1 2πi 2 π + 2 sin2p2p B 11 p h 1 p H 1 p dp ds e p x 1 ds , E ¯ T u 2,1 T x 1 0 , x 2 0 = 1 2πi 2 π + 2 sin2p2p B 21 p p h 1 p H 1 p dp ds e p x 1 ds . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaamaalaaabaGabmyrayaaraaabaGaamytaa aacaWG1bWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaaiaad2eaaaGc daqadaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaicdaaaGccaGGSa GaamiEamaaDaaaleaacaaIYaaabaGaaGimaaaaaOGaayjkaiaawMca aiabg2da9maalaaabaGaaGymaaqaaiaaikdacqaHapaCcaWGPbaaai aaykW7daWcaaqaamaakaaabaGaaGOnaaWcbeaaaOqaaiabec8aWnaa CaaaleqabaGaaG4maiaac+cacaaIYaaaaaaakiaaykW7caaMc8+aa8 qCaeaaqaaaaaaaaaWdbmaalaaapaqaaiaaikdaaeaapeGaci4Caiaa cMgacaGGUbGaaGOma8aacaWGWbGaey4kaSYdbiaaikdacaWGWbaaa8 aadaWcaaqaaiaadkeadaWgaaWcbaGaaGymaiaaikdaaeqaaOWaaeWa aeaacaWGWbaacaGLOaGaayzkaaGaamiCaaqaaiaadIgadaqhaaWcba GaaGOmaaqaaiabgkHiTaaakmaabmaabaGaamiCaaGaayjkaiaawMca aiaadIeadaqhaaWcbaGaaGOmaaqaaiabgkHiTaaakmaabmaabaGaam iCaaGaayjkaiaawMcaaaaadaWcaaqaaiaadsgacaWGWbaabaGaamiz aiaadohaaaGaamyzamaaCaaaleqabaGaamiCaiaadIhadaWgaaadba GaaGymaaqabaaaaOGaamizaiaadohaaSqaaiabgkHiTiabg6HiLcqa aiabgUcaRiabg6HiLcqdcqGHRiI8aOGaaiilaaqaamaalaaabaGabm yrayaaraaabaGaamytaaaacaWG1bWaa0baaSqaaiaaikdacaGGSaGa aGymaaqaaiaad2eaaaGcdaqadaqaaiaadIhadaqhaaWcbaGaaGymaa qaaiaaicdaaaGccaGGSaGaamiEamaaDaaaleaacaaIYaaabaGaaGim aaaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaaik dacqaHapaCcaWGPbaaaiaaykW7daWcaaqaamaakaaabaGaaGOnaaWc beaaaOqaaiabec8aWnaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaa aakiaaykW7caaMc8+aa8qCaeaapeWaaSaaa8aabaGaaGOmaaqaa8qa ciGGZbGaaiyAaiaac6gacaaIYaWdaiaadchacqGHRaWkpeGaaGOmai aadchaaaWdamaalaaabaGaamOqamaaBaaaleaacaaIYaGaaGOmaaqa baGcdaqadaqaaiaadchaaiaawIcacaGLPaaacaWGWbaabaGaamiAam aaDaaaleaacaaIYaaabaGaeyOeI0caaOWaaeWaaeaacaWGWbaacaGL OaGaayzkaaGaamisamaaDaaaleaacaaIYaaabaGaeyOeI0caaOWaae WaaeaacaWGWbaacaGLOaGaayzkaaaaamaalaaabaGaamizaiaadcha aeaacaWGKbGaam4CaaaacaWGLbWaaWbaaSqabeaacaWGWbGaamiEam aaBaaameaacaaIXaaabeaaaaGccaWGKbGaam4CaaWcbaGaeyOeI0Ia eyOhIukabaGaey4kaSIaeyOhIukaniabgUIiYdGccaGGSaaabaWaaS aaaeaaceWGfbGbaebaaeaacaWGubaaaiaadwhadaqhaaWcbaGaaGym aiaacYcacaaIXaaabaGaamivaaaakmaabmaabaGaamiEamaaDaaale aacaaIXaaabaGaaGimaaaakiaacYcacaWG4bWaa0baaSqaaiaaikda aeaacaaIWaaaaaGccaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaSaaae aacaaIXaaabaGaaGOmaiabec8aWjaadMgaaaGaaGPaVpaalaaabaWa aOaaaeaacaaIYaaaleqaaaGcbaWaaOaaaeaacqaHapaCaSqabaaaaO GaaGPaVlaaykW7daWdXbqaa8qadaWcaaWdaeaacaaIYaaabaWdbiGa cohacaGGPbGaaiOBaiaaikdapaGaamiCaiabgkHiT8qacaaIYaGaam iCaaaapaWaaSaaaeaacaWGcbWaaSbaaSqaaiaaigdacaaIXaaabeaa kmaabmaabaGaamiCaaGaayjkaiaawMcaaaqaaiaadIgadaqhaaWcba GaaGymaaqaaiabgkHiTaaakmaabmaabaGaamiCaaGaayjkaiaawMca aiaadIeadaqhaaWcbaGaaGymaaqaaiabgkHiTaaakmaabmaabaGaam iCaaGaayjkaiaawMcaaaaadaWcaaqaaiaadsgacaWGWbaabaGaamiz aiaadohaaaGaamyzamaaCaaaleqabaGaamiCaiaadIhadaWgaaadba GaaGymaaqabaaaaOGaamizaiaadohaaSqaaiabgkHiTiabg6HiLcqa aiabgUcaRiabg6HiLcqdcqGHRiI8aOGaaiilaaqaamaalaaabaGabm yrayaaraaabaGaamivaaaacaWG1bWaa0baaSqaaiaaikdacaGGSaGa aGymaaqaaiaadsfaaaGcdaqadaqaaiaadIhadaqhaaWcbaGaaGymaa qaaiaaicdaaaGccaGGSaGaamiEamaaDaaaleaacaaIYaaabaGaaGim aaaaaOGaayjkaiaawMcaaiabg2da9iabgkHiTmaalaaabaGaaGymaa qaaiaaikdacqaHapaCcaWGPbaaaiaaykW7daWcaaqaamaakaaabaGa aGOmaaWcbeaaaOqaamaakaaabaGaeqiWdahaleqaaaaakiaaykW7ca aMc8+aa8qCaeaapeWaaSaaa8aabaGaaGOmaaqaa8qaciGGZbGaaiyA aiaac6gacaaIYaWdaiaadchacqGHsislpeGaaGOmaiaadchaaaWdam aalaaabaGaamOqamaaBaaaleaacaaIYaGaaGymaaqabaGcdaqadaqa aiaadchaaiaawIcacaGLPaaacaWGWbaabaGaamiAamaaDaaaleaaca aIXaaabaGaeyOeI0caaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGa amisamaaDaaaleaacaaIXaaabaGaeyOeI0caaOWaaeWaaeaacaWGWb aacaGLOaGaayzkaaaaamaalaaabaGaamizaiaadchaaeaacaWGKbGa am4CaaaacaWGLbWaaWbaaSqabeaacaWGWbGaamiEamaaBaaameaaca aIXaaabeaaaaGccaWGKbGaam4CaaWcbaGaeyOeI0IaeyOhIukabaGa ey4kaSIaeyOhIukaniabgUIiYdGccaGGUaaaaaa@4816@               (4.23)

Внеинтегральные члены в (4.22) соответствуют вычетам исходных подынтегральных функций в нуле, величины δ0.6738, δ m 0.20943 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH0oazcqGHijYUqaaaaaaaaaWdbiaaicdaca GGUaGaaGOnaiaaiEdacaaIZaGaaGioa8aacaGGSaGaaGPaVlaaykW7 cqaH0oazdaWgaaWcbaGaamyBaaqabaGccqGHijYUpeGaaGimaiaac6 cacaaIYaGaaGimaiaaiMdacaaI0aGaaG4maaaa@4670@   были посчитаны в работе [53] с использованием результатов [43]. При вычислении интегралов для улучшения сходимости можно воспользоваться свойством голоморфности функций h 2 ± p , H 2 ± p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGObWaa0baaSqaaiaaikdaaeaacqGHXcqSaa GcdaqadaqaaiaadchaaiaawIcacaGLPaaacaGGSaGaamisamaaDaaa leaacaaIYaaabaGaeyySaelaaOWaaeWaaeaacaWGWbaacaGLOaGaay zkaaaaaa@3E32@  в левой и правой полуплоскостях соответственно и вычесть из величин B ij p p sin 2 p p 2 , 2p B 12 p sin2p±2p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaaiaadkeadaWgaaWcbaGaamyAaiaadQ gaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaamiCaaqaaiGa cohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaadchacqGHsi slcaWGWbWaaWbaaSqabeaacaaIYaaaaaaakiaacYcaqaaaaaaaaaWd bmaalaaapaqaaiaaikdacaWGWbGaaGPaVlaadkeadaWgaaWcbaGaaG ymaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaabaWd biGacohacaGGPbGaaiOBaiaaikdapaGaamiCaiabgglaX+qacaaIYa GaamiCaaaaaaa@5070@  произвольные голоморфные члены.

4.3. Представление производных от смещений для точек, не слишком близких к вершине трещины. Интегралы, определяющие производные от смещений, с помощью теории вычетов можно преобразовать в ряды:

E ¯ M u 1,1 M x 1 0 , x 2 0 =12 x 2 0 1 2 6 π 3/2 Re k=1 R k (2) B 12 p k (1) p k (1) exp p k (1) x 1 , E ¯ M u 2,1 M x 1 0 , x 2 0 =12 x 1 0 δ 6 π 3/2 Re k=1 R k (2) B 22 p k (1) p k (1) exp p k (1) x 1 , E ¯ T u 1,1 T x 1 0 , x 2 0 = 46 x 2 0 2 π Re k=1 R k (1) B 11 p k (1) exp p k (1) x 1 , E ¯ T u 2,1 T x 1 0 , x 2 0 =6 x 1 0 δ m 2 π Re k=1 R k (1) B 21 p k (1) exp p k (1) x 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaaceqaamaalaaabaGabmyrayaaraaabaGaamytaa aacaWG1bWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaaiaad2eaaaGc daqadaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaicdaaaGccaGGSa GaamiEamaaDaaaleaacaaIYaaabaGaaGimaaaaaOGaayjkaiaawMca aiabg2da9iabgkHiTiaaigdacaaIYaWaaeWaaeaacaWG4bWaa0baaS qaaiaaikdaaeaacaaIWaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGa aGOmaaaaaiaawIcacaGLPaaacqGHsislcaaMc8+aaSaaaeaadaGcaa qaaiaaiAdaaSqabaaakeaacqaHapaCdaahaaWcbeqaaiaaiodacaGG VaGaaGOmaaaaaaGcciGGsbGaaiyzamaaqahabaGaamOuamaaDaaale aacaWGRbaabaGaaiikaiaaikdacaGGPaaaaaqaaiaadUgacqGH9aqp caaIXaaabaGaeyOhIukaniabggHiLdGccaWGcbWaaSbaaSqaaiaaig dacaaIYaaabeaakmaabmaabaGaamiCamaaDaaaleaacaWGRbaabaGa aiikaiaaigdacaGGPaaaaaGccaGLOaGaayzkaaGaamiCamaaDaaale aacaWGRbaabaGaaiikaiaaigdacaGGPaaaaOGaciyzaiaacIhacaGG WbWaaeWaaeaacaWGWbWaa0baaSqaaiaadUgaaeaacaGGOaGaaGymai aacMcaaaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaGaaiilaaqaamaalaaabaGabmyrayaaraaabaGaamytaaaacaWG1b Waa0baaSqaaiaaikdacaGGSaGaaGymaaqaaiaad2eaaaGcdaqadaqa aiaadIhadaqhaaWcbaGaaGymaaqaaiaaicdaaaGccaGGSaGaamiEam aaDaaaleaacaaIYaaabaGaaGimaaaaaOGaayjkaiaawMcaaiabg2da 9iaaigdacaaIYaWaaeWaaeaacaWG4bWaa0baaSqaaiaaigdaaeaaca aIWaaaaOGaeyOeI0IaeqiTdqgacaGLOaGaayzkaaGaeyOeI0YaaSaa aeaadaGcaaqaaiaaiAdaaSqabaaakeaacqaHapaCdaahaaWcbeqaai aaiodacaGGVaGaaGOmaaaaaaGcciGGsbGaaiyzaiaaykW7daaeWbqa aiaadkfadaqhaaWcbaGaam4AaaqaaiaacIcacaaIYaGaaiykaaaaae aacaWGRbGaeyypa0JaaGymaaqaaiabg6HiLcqdcqGHris5aOGaamOq amaaBaaaleaacaaIYaGaaGOmaaqabaGcdaqadaqaaiaadchadaqhaa WcbaGaam4AaaqaaiaacIcacaaIXaGaaiykaaaaaOGaayjkaiaawMca aiaadchadaqhaaWcbaGaam4AaaqaaiaacIcacaaIXaGaaiykaaaaki GacwgacaGG4bGaaiiCamaabmaabaGaamiCamaaDaaaleaacaWGRbaa baGaaiikaiaaigdacaGGPaaaaOGaamiEamaaBaaaleaacaaIXaaabe aaaOGaayjkaiaawMcaaiaacYcaaeaadaWcaaqaaiqadweagaqeaaqa aiaadsfaaaGaamyDamaaDaaaleaacaaIXaGaaiilaiaaigdaaeaaca WGubaaaOWaaeWaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIWaaa aOGaaiilaiaadIhadaqhaaWcbaGaaGOmaaqaaiaaicdaaaaakiaawI cacaGLPaaacqGH9aqpcqGHsisldaqadaqaaiaaisdacqGHsislcaaI 2aGaamiEamaaDaaaleaacaaIYaaabaGaaGimaaaaaOGaayjkaiaawM caaiabgkHiTiaaykW7daWcaaqaamaakaaabaGaaGOmaaWcbeaaaOqa amaakaaabaGaeqiWdahaleqaaaaakiaaykW7ciGGsbGaaiyzamaaqa habaGaamOuamaaDaaaleaacaWGRbaabaGaaiikaiaaigdacaGGPaaa aaqaaiaadUgacqGH9aqpcaaIXaaabaGaeyOhIukaniabggHiLdGcca WGcbWaaSbaaSqaaiaaigdacaaIXaaabeaakmaabmaabaGaamiCamaa DaaaleaacaWGRbaabaGaaiikaiaaigdacaGGPaaaaaGccaGLOaGaay zkaaGaciyzaiaacIhacaGGWbWaaeWaaeaacaWGWbWaa0baaSqaaiaa dUgaaeaacaGGOaGaaGymaiaacMcaaaGccaWG4bWaaSbaaSqaaiaaig daaeqaaaGccaGLOaGaayzkaaGaaGPaVlaacYcaaeaadaWcaaqaaiqa dweagaqeaaqaaiaadsfaaaGaamyDamaaDaaaleaacaaIYaGaaiilai aaigdaaeaacaWGubaaaOWaaeWaaeaacaWG4bWaa0baaSqaaiaaigda aeaacaaIWaaaaOGaaiilaiaadIhadaqhaaWcbaGaaGOmaaqaaiaaic daaaaakiaawIcacaGLPaaacqGH9aqpcqGHsislcaaI2aWaaeWaaeaa caWG4bWaa0baaSqaaiaaigdaaeaacaaIWaaaaOGaeyOeI0IaeqiTdq 2aaSbaaSqaaiaad2gaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaaGPa VlaaykW7daWcaaqaamaakaaabaGaaGOmaaWcbeaaaOqaamaakaaaba GaeqiWdahaleqaaaaakiaaykW7ciGGsbGaaiyzamaaqahabaGaamOu amaaDaaaleaacaWGRbaabaGaaiikaiaaigdacaGGPaaaaaqaaiaadU gacqGH9aqpcaaIXaaabaGaeyOhIukaniabggHiLdGccaWGcbWaaSba aSqaaiaaikdacaaIXaaabeaakmaabmaabaGaamiCamaaDaaaleaaca WGRbaabaGaaiikaiaaigdacaGGPaaaaaGccaGLOaGaayzkaaGaciyz aiaacIhacaGGWbWaaeWaaeaacaWGWbWaa0baaSqaaiaadUgaaeaaca GGOaGaaGymaiaacMcaaaGccaWG4bWaaSbaaSqaaiaaigdaaeqaaaGc caGLOaGaayzkaaGaaiilaaaaaa@3402@  (4.24)

  E ¯ M u 1,1 M x 1 0 , x 2 0 = 2 6 π 3/2 Re R k (3) B 12 p k (3) p k (3) exp p k (3) x 1 , E ¯ M u 2,1 M x 1 0 , x 2 0 = 2 6 π 3/2 Re k=1 R k (3) B 22 p k (3) p k (3) exp p k (3) x 1 , E ¯ T u 1,1 T x 1 0 , x 2 0 = 2 2 π Re k=1 R k (4) B 11 p k (3) exp p k (4) x 1 , E ¯ T u 2,1 T x 1 0 , x 2 0 = 2 2 π Re k=1 R k (4) B 21 p k (3) exp p k (4) x 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaamaalaaabaGabmyrayaaraaabaGaamytaa aacaWG1bWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaaiaad2eaaaGc daqadaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaicdaaaGccaGGSa GaamiEamaaDaaaleaacaaIYaaabaGaaGimaaaaaOGaayjkaiaawMca aiabg2da9maalaaabaGaaGOmamaakaaabaGaaGOnaaWcbeaaaOqaai abec8aWnaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaaaakiaaykW7 ciGGsbGaaiyzaiaadkfadaqhaaWcbaGaam4AaaqaaiaacIcacaaIZa GaaiykaaaakiaadkeadaWgaaWcbaGaaGymaiaaikdaaeqaaOWaaeWa aeaacaWGWbWaa0baaSqaaiaadUgaaeaacaGGOaGaaG4maiaacMcaaa aakiaawIcacaGLPaaacaWGWbWaa0baaSqaaiaadUgaaeaacaGGOaGa aG4maiaacMcaaaGcciGGLbGaaiiEaiaacchadaqadaqaaiaadchada qhaaWcbaGaam4AaaqaaiaacIcacaaIZaGaaiykaaaakiaadIhadaWg aaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaGGSaaabaWaaSaaae aaceWGfbGbaebaaeaacaWGnbaaaiaadwhadaqhaaWcbaGaaGOmaiaa cYcacaaIXaaabaGaamytaaaakmaabmaabaGaamiEamaaDaaaleaaca aIXaaabaGaaGimaaaakiaacYcacaWG4bWaa0baaSqaaiaaikdaaeaa caaIWaaaaaGccaGLOaGaayzkaaGaeyypa0JaaGPaVpaalaaabaGaaG OmamaakaaabaGaaGOnaaWcbeaaaOqaaiabec8aWnaaCaaaleqabaGa aG4maiaac+cacaaIYaaaaaaakiGackfacaGGLbGaaGPaVpaaqahaba GaamOuamaaDaaaleaacaWGRbaabaGaaiikaiaaiodacaGGPaaaaaqa aiaadUgacqGH9aqpcaaIXaaabaGaeyOhIukaniabggHiLdGccaWGcb WaaSbaaSqaaiaaikdacaaIYaaabeaakmaabmaabaGaamiCamaaDaaa leaacaWGRbaabaGaaiikaiaaiodacaGGPaaaaaGccaGLOaGaayzkaa GaamiCamaaDaaaleaacaWGRbaabaGaaiikaiaaiodacaGGPaaaaOGa ciyzaiaacIhacaGGWbWaaeWaaeaacaWGWbWaa0baaSqaaiaadUgaae aacaGGOaGaaG4maiaacMcaaaGccaWG4bWaaSbaaSqaaiaaigdaaeqa aaGccaGLOaGaayzkaaGaaiilaaqaamaalaaabaGabmyrayaaraaaba GaamivaaaacaWG1bWaa0baaSqaaiaaigdacaGGSaGaaGymaaqaaiaa dsfaaaGcdaqadaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaicdaaa GccaGGSaGaamiEamaaDaaaleaacaaIYaaabaGaaGimaaaaaOGaayjk aiaawMcaaiabg2da9iaaykW7cqGHsisldaWcaaqaaiaaikdadaGcaa qaaiaaikdaaSqabaaakeaadaGcaaqaaiabec8aWbWcbeaaaaGcciGG sbGaaiyzamaaqahabaGaamOuamaaDaaaleaacaWGRbaabaGaaiikai aaisdacaGGPaaaaaqaaiaadUgacqGH9aqpcaaIXaaabaGaeyOhIuka niabggHiLdGccaWGcbWaaSbaaSqaaiaaigdacaaIXaaabeaakmaabm aabaGaamiCamaaDaaaleaacaWGRbaabaGaaiikaiaaiodacaGGPaaa aaGccaGLOaGaayzkaaGaaGPaVlaaykW7ciGGLbGaaiiEaiaacchada qadaqaaiaadchadaqhaaWcbaGaam4AaaqaaiaacIcacaaI0aGaaiyk aaaakiaadIhadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaca aMc8UaaiilaaqaamaalaaabaGabmyrayaaraaabaGaamivaaaacaWG 1bWaa0baaSqaaiaaikdacaGGSaGaaGymaaqaaiaadsfaaaGcdaqada qaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaicdaaaGccaGGSaGaamiE amaaDaaaleaacaaIYaaabaGaaGimaaaaaOGaayjkaiaawMcaaiabg2 da9iaaykW7cqGHsisldaWcaaqaaiaaikdadaGcaaqaaiaaikdaaSqa baaakeaadaGcaaqaaiabec8aWbWcbeaaaaGccaaMc8UaciOuaiaacw gacaaMc8+aaabCaeaacaWGsbWaa0baaSqaaiaadUgaaeaacaGGOaGa aGinaiaacMcaaaaabaGaam4Aaiabg2da9iaaigdaaeaacqGHEisPa0 GaeyyeIuoakiaadkeadaWgaaWcbaGaaGOmaiaaigdaaeqaaOWaaeWa aeaacaWGWbWaa0baaSqaaiaadUgaaeaacaGGOaGaaG4maiaacMcaaa aakiaawIcacaGLPaaacaaMc8UaaGPaVlGacwgacaGG4bGaaiiCamaa bmaabaGaamiCamaaDaaaleaacaWGRbaabaGaaiikaiaaisdacaGGPa aaaOGaamiEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaa ykW7caGGSaaaaaa@1429@                          (4.25)

где

   R k (1) =res 1 sin 2 p k (1) p k (1)2 h 1 + p k (1) H 1 + p k (1) , R k (2) =res 1 sin 2 p k (1) p k (1)2 h 2 + p k (1) H 2 + p k (1) , R k (3) =res 1 sin2 p k (3) +2 p k (3) h 2 p k (3) H 2 p k (3) , R k (4) =res 1 sin2 p k (4) 2 p k p k (4) h 1 p k (4) H 1 p k (4) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaaceqaaiaadkfadaqhaaWcbaGaam4AaaqaaiaacI cacaaIXaGaaiykaaaakiabg2da9iGackhacaGGLbGaai4Camaabmaa baWaaSaaaeaacaaIXaaabaWaaeWaaeaaciGGZbGaaiyAaiaac6gada ahaaWcbeqaaiaaikdaaaGccaWGWbWaa0baaSqaaiaadUgaaeaacaGG OaGaaGymaiaacMcaaaGccqGHsislcaWGWbWaa0baaSqaaiaadUgaae aacaGGOaGaaGymaiaacMcacaaMc8UaaGOmaaaaaOGaayjkaiaawMca aiaadIgadaqhaaWcbaGaaGymaaqaaiabgUcaRaaakmaabmaabaGaam iCamaaDaaaleaacaWGRbaabaGaaiikaiaaigdacaGGPaaaaaGccaGL OaGaayzkaaGaamisamaaDaaaleaacaaIXaaabaGaey4kaScaaOWaae WaaeaacaWGWbWaa0baaSqaaiaadUgaaeaacaGGOaGaaGymaiaacMca aaaakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaGaaiilaaqaaiaadk fadaqhaaWcbaGaam4AaaqaaiaacIcacaaIYaGaaiykaaaakiabg2da 9iGackhacaGGLbGaai4CamaabmaabaWaaSaaaeaacaaIXaaabaWaae WaaeaaciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccaWG WbWaa0baaSqaaiaadUgaaeaacaGGOaGaaGymaiaacMcaaaGccqGHsi slcaWGWbWaa0baaSqaaiaadUgaaeaacaGGOaGaaGymaiaacMcacaaM c8UaaGOmaaaaaOGaayjkaiaawMcaaiaadIgadaqhaaWcbaGaaGOmaa qaaiabgUcaRaaakmaabmaabaGaamiCamaaDaaaleaacaWGRbaabaGa aiikaiaaigdacaGGPaaaaaGccaGLOaGaayzkaaGaamisamaaDaaale aacaaIYaaabaGaey4kaScaaOWaaeWaaeaacaWGWbWaa0baaSqaaiaa dUgaaeaacaGGOaGaaGymaiaacMcaaaaakiaawIcacaGLPaaaaaaaca GLOaGaayzkaaGaaiilaaqaaiaadkfadaqhaaWcbaGaam4Aaaqaaiaa cIcacaaIZaGaaiykaaaakiabg2da9iGackhacaGGLbGaai4Camaabm aabaWaaSaaaeaacaaIXaaabaWaaeWaaeaaciGGZbGaaiyAaiaac6ga caaIYaGaamiCamaaDaaaleaacaWGRbaabaGaaiikaiaaiodacaGGPa aaaOGaey4kaSIaaGOmaiaadchadaqhaaWcbaGaam4AaaqaaiaacIca caaIZaGaaiykaaaaaOGaayjkaiaawMcaaiaadIgadaqhaaWcbaGaaG OmaaqaaiabgkHiTaaakmaabmaabaGaamiCamaaDaaaleaacaWGRbaa baGaaiikaiaaiodacaGGPaaaaaGccaGLOaGaayzkaaGaamisamaaDa aaleaacaaIYaaabaGaeyOeI0caaOWaaeWaaeaacaWGWbWaa0baaSqa aiaadUgaaeaacaGGOaGaaG4maiaacMcaaaaakiaawIcacaGLPaaaaa aacaGLOaGaayzkaaGaaiilaaqaaiaadkfadaqhaaWcbaGaam4Aaaqa aiaacIcacaaI0aGaaiykaaaakiabg2da9iGackhacaGGLbGaai4Cam aabmaabaWaaSaaaeaacaaIXaaabaWaaeWaaeaaciGGZbGaaiyAaiaa c6gacaaIYaGaamiCamaaDaaaleaacaWGRbaabaGaaiikaiaaisdaca GGPaaaaOGaeyOeI0IaaGOmaiaadchadaWgaaWcbaGaam4Aaaqabaaa kiaawIcacaGLPaaacaWGWbWaa0baaSqaaiaadUgaaeaacaGGOaGaaG inaiaacMcaaaGccaWGObWaa0baaSqaaiaaigdaaeaacqGHsislaaGc daqadaqaaiaadchadaqhaaWcbaGaam4AaaqaaiaacIcacaaI0aGaai ykaaaaaOGaayjkaiaawMcaaiaadIeadaqhaaWcbaGaaGymaaqaaiab gkHiTaaakmaabmaabaGaamiCamaaDaaaleaacaWGRbaabaGaaiikai aaisdacaGGPaaaaaGccaGLOaGaayzkaaaaaaGaayjkaiaawMcaaaaa aa@E1FA@                                       (4.26)

для x 1 <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyipaW JaaGimaaaa@34B6@  и x 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOpa4 JaaGimaaaa@34BB@  соответственно. Здесь p k (1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGWbWaa0baaSqaaiaadUgaaeaacaGGOaGaaG ymaiaacMcacaaMc8oaaaaa@36BB@ – нули функции sin 2 p p 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaik daaaGccaWGWbGaeyOeI0IaamiCamaaDaaaleaaaeaacaaMc8UaaGOm aaaaaaa@3A20@  с положительными действительными частями; p k (3) p k (4) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGWbWaa0baaSqaaiaadUgaaeaacaGGOaGaaG 4maiaacMcacaaMc8oaaOGaamiCamaaDaaaleaacaWGRbaabaGaaiik aiaaisdacaGGPaGaaGPaVdaaaaa@3C7B@ – нули функций sin2p+2p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaciGGZbGaaiyAaiaac6gacaaIYaGaamiCaiabgU caRiaaikdacaWGWbaaaa@3826@  и sin2p2p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaciGGZbGaaiyAaiaac6gacaaIYaGaamiCaiabgk HiTiaaikdacaWGWbaaaa@3831@  с отрицательными действительными частями соответственно. При записи (4.24), (4.25) использовался тот факт, что корни p k (m) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGWbWaa0baaSqaaiaadUgaaeaacaGGOaGaam yBaiaacMcaaaaaaa@3567@  и соответствующие им вычеты комплексно-сопряженные. Данные ряды весьма удобны для вычислений и сходятся тем быстрее, чем больше абсолютная величина x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaaa@32EF@ , поскольку представляют собой сумму убывающих экспонент. Однако для x 1 0.1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaWgaaWcbaGaaGymaaqaba aakiaawEa7caGLiWoacqWI8iIocaaIWaGaaiOlaiaaigdaaaa@396B@  уже требуется учет порядка десятка членов, а при x 1 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaWgaaWcbaGaaGymaaqaba aakiaawEa7caGLiWoacqGHsgIRcaaIWaaaaa@38C2@  ряды расходятся.

Корни p k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGWbWaaSbaaSqaaiaadUgaaeqaaaaa@331B@  величины R k (1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGsbWaa0baaSqaaiaadUgaaeaacaGGOaGaaG ymaiaacMcaaaaaaa@3512@  не зависят от параметров и могут быть посчитаны заранее. Посчитанные значения для первых 20 нулей и вычетов приведены в табл. 1 и 2, где введены обозначения:

  α k (m) =Re p k (m) , β k (m) =Im p k (m) , γ k (m) =Re R k (m) , δ k (m) =Im R k (m) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaaMc8UaeqySde2aa0baaSqaaiaadUgaaeaaca GGOaGaaiyBaiaacMcaaaGccqGH9aqpciGGsbGaaiyzaiaadchadaqh aaWcbaGaam4AaaqaaiaacIcacaGGTbGaaiykaaaakiaacYcacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlabek7aInaaDaaaleaacaWGRbaa baGaaiikaiaac2gacaGGPaaaaOGaeyypa0Jaciysaiaac2gacaWGWb Waa0baaSqaaiaadUgaaeaacaGGOaGaaiyBaiaacMcaaaGccaGGSaGa aGPaVlaaykW7cqaHZoWzdaqhaaWcbaGaam4AaaqaaiaacIcacaGGTb Gaaiykaaaakiabg2da9iGackfacaGGLbGaamOuamaaDaaaleaacaWG RbaabaGaaiikaiaac2gacaGGPaaaaOGaaiilaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaeqiTdq2aa0baaSqaaiaadUgaaeaacaGGOaGa aiyBaiaacMcaaaGccqGH9aqpciGGjbGaaiyBaiaadkfadaqhaaWcba Gaam4AaaqaaiaacIcacaGGTbGaaiykaaaaaaa@77E5@         (4.27)

 

Таблица 1. Действительные и мнимые части корней и вычетов функций, используемых при вычислении величин, относящихся к левой части полосы

k

αk(1)βk(1)γk(1)δk(1)γk(2)δk(2)

1

4.212

2.251

8.711·10–3

1. ·10–3

1.419·102

9.624·10–3

2

7.498

2.769

1.370 ·10–3

8.116·104

3.153·10–3

3.483·10–3

3

10.713

3.103

3.897·104

3.415·104

1.159·10–3

1.693·10–3

4

13.900

3.352

1.485·104

1.668·104

5.422·104

9.659·104

5

17.073

3.551

6.766·105

9.123·105

2.932·104

6.103·104

6

20.239

3.717

3.484·105

5.432·105

1.748·104

4.137·104

7

23.398

3.859

1.960·105

3.451·105

1.118·104

2.954·104

8

26.555

3.983

1.181·105

2.306·105

7.547·105

2.194·104

9

29.708

4.094

7.498·106

1.605·105

5.311·105

1.682·104

10

32.860

4.193

4.973·106

1.155·105

3.866·105

1.322·104

11

36.010

4.284

3.418·106

8.545E–06

2.894·105

1.061·104

12

39.159

4.367

2.420·106

6.473E–06

2.217·105

8.670·105

13

42.307

4.443

1.758·106

5.003E–06

1.732·105

7.191·105

14

45.454

4.515

1.305·106

3.934E–06

1.377·105

6.041·105

15

48.601

4.581

9.880·107

3.142E–06

1.111·105

5.133·105

16

51.747

4.643

7.605·107

2.543E–06

9.080·106

4.405·105

17

54.892

4.702

5.941·107

2.083E–06

7.508·106

3.814·105

18

58.038

4.758

4.704·107

1.724E–06

6.272·106

3.327·105

19

61.183

4.810

3.769·107

1.441E–06

5.288·106

2.924·105

20

64.327

4.860

3.053·107

1.215E–06

4.496·106

2.585·105

 

Таблица 2. Действительные и мнимые части корней и вычетов функций, используемых при вычислении величин, относящихся к правой части полосы

k

αk(3)

βk(3)γk(3)δk(3)

αk(4)

βk(4)γk(4)δk(4)

1

2.1062

1.1254

–3.473·101

7.540·102

3.7488

1.3843

3.105·102

–6.121·102

2

5.3563

1.5516

–1.788·102

2.069·102

6.9500

1.6761

7.951·10–3

–2.481·102

3

8.5367

1.7755

–3.781·10–3

6.885·10–3

10.1193

1.8584

3.420·10–3

–1.413·102

4

11.6992

1.9294

–1.314·10–3

3.160·10–3

13.2773

1.9916

1.851·10–3

–9.388·10–3

5

14.8541

2.0469

–5.902·104

1.737·10–3

16.4299

2.0966

1.141·10–3

–6.806·10–3

6

18.0049

2.1419

–3.097·104

1.070·10–3

19.5794

2.1834

7.653·104

–5.221·10–3

7

21.1534

2.2217

–1.805·104

7.125·104

22.7270

2.2573

5.446·104

–4.168·10–3

8

24.3003

2.2906

–1.134·104

5.019·104

25.8734

2.3217

4.049·104

–3.426·10–3

9

27.4462

2.3510

–7.548·105

3.690·104

29.0188

2.3788

3.114·104

–2.881·10–3

10

30.5913

2.4050

–5.250·105

2.805·104

32.1636

2.4300

2.459·104

–2.466·10–3

11

33.7358

2.4537

–3.785·105

2.190·104

35.3079

2.4764

1.985·104

–2.142·10–3

12

36.8799

2.4981

–2.809·105

1.749·104

38.4518

2.5189

1.632·104

–1.883·10–3

13

40.0236

2.5389

–2.137·105

1.422·104

41.5954

2.5581

1.362·104

–1.673·10–3

14

43.1671

2.5766

–1.660·105

1.175·104

44.7387

2.5944

1.152·104

–1.498·10–3

15

46.3103

2.6116

–1.312·105

9.842·105

47.8819

2.6283

9.850·105

–1.353·10–3

16

49.4534

2.6444

–1.053·105

8.339·105

51.0248

2.6600

8.507·105

–1.229·10–3

17

52.5963

2.6751

–8.572·106

7.139·105

54.1677

2.6898

7.411·105

–1.123·10–3

18

55.7390

2.7041

–7.060·106

6.167·105

57.3104

2.7179

6.506·105

–1.031·10–3

19

58.8817

2.7314

–5.877·106

5.370·105

60.4530

2.7446

5.751·105

–9.516·104

20

62.0242

2.7574

–4.939·106

4.711·105

63.5955

2.7699

5.115·105

–8.816·104

 

4.3. Асимптотическое представление производных смещений для точек, близких к вершине трещины. Как известно, главные члены асимптотик напряжений, смещений и их производных вблизи вершины трещины определяются КИН. Однако, в отличие от весьма эффективного использования поля напряжений, определяемого КИН в качестве критерия роста трещин, распределение смещений и их производных, определяемых исключительно членом, пропорциональным КИН, оказывается достаточно точным только в весьма малой области, прилегающей к вершине трещины, а на расстояниях порядка 0.1 толщины слоя (для которых еще приемлемо использование формул (4.24), (4.25)) использование лишь членов, определяемых КИН, становится недостаточным. В общем случае распределение производных смещений вблизи вершины трещины может быть представлено как сумма ряда по полуцелым степеням r= x 1 2 + x 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGYbGaeyypa0ZaaOaaaeaacaWG4bWaa0baaS qaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaamiEamaaDaaaleaacaaI YaaabaGaaGOmaaaaaeqaaaaa@3947@ , соответствующего собственным решениям для бесконечного тела с трещиной, и ряда по целым степеням x 1 , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilai aadIhadaWgaaWcbaGaaGOmaaqabaaaaa@358E@ , соответствующего регулярной части поля напряжения.

  σ ij tip = n=0 N σ ij (n1/2) θ r n1/2 + σ ij (0) + σ ij.1 (0) x 1 + σ ij,2 (0) x 2 + + σ ij,11 (0) x 1 2 2 + σ ij,12 (0) x 1 x 2 + σ ij,22 (0) x 2 2 2 +... u i,1 tip = n=0 N U i (n1/2) θ r n1/2 + U i (0) + U i,1 (0) x 1 + U i,2 (0) x 2 + + U i,11 (0) x 1 2 2 + U i,12 (0) x 1 x 2 + U i,22 (0) x 2 2 2 +... MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiabeo8aZnaaDaaaleaacaWGPbGaamOAaa qaaiaadshacaWGPbGaamiCaaaakiabg2da9maaqahabaGaeq4Wdm3a a0baaSqaaiaadMgacaWGQbaabaGaaiikaiaad6gacqGHsislcaaIXa Gaai4laiaaikdacaGGPaaaaaqaaiaad6gacqGH9aqpcaaIWaaabaGa amOtaaqdcqGHris5aOWaaeWaaeaacqaH4oqCaiaawIcacaGLPaaaca WGYbWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaiaac+cacaaIYaaa aOGaey4kaSIaeq4Wdm3aa0baaSqaaiaadMgacaWGQbaabaGaaiikai aaicdacaGGPaaaaOGaey4kaSIaeq4Wdm3aa0baaSqaaiaadMgacaWG QbGaaiOlaiaaigdaaeaacaGGOaGaaGimaiaacMcaaaGccaWG4bWaaS baaSqaaiaaigdaaeqaaOGaey4kaSIaeq4Wdm3aa0baaSqaaiaadMga caWGQbGaaiilaiaaikdaaeaacaGGOaGaaGimaiaacMcaaaGccaWG4b WaaSbaaSqaaiaaikdaaeqaaOGaey4kaScabaGaey4kaSIaaGPaVlab eo8aZnaaDaaaleaacaWGPbGaamOAaiaacYcacaaIXaGaaGymaaqaai aacIcacaaIWaGaaiykaaaakmaalaaabaGaamiEamaaDaaaleaacaaI XaaabaGaaGOmaaaaaOqaaiaaikdaaaGaey4kaSIaeq4Wdm3aa0baaS qaaiaadMgacaWGQbGaaiilaiaaigdacaaIYaaabaGaaiikaiaaicda caGGPaaaaOGaamiEamaaBaaaleaacaaIXaaabeaakiaadIhadaWgaa WcbaGaaGOmaaqabaGccqGHRaWkcqaHdpWCdaqhaaWcbaGaamyAaiaa dQgacaGGSaGaaGOmaiaaikdaaeaacaGGOaGaaGimaiaacMcaaaGcda WcaaqaaiaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaaI YaaaaiabgUcaRiaac6cacaGGUaGaaiOlaaqaaiaadwhadaqhaaWcba GaamyAaiaacYcacaaIXaaabaGaamiDaiaadMgacaWGWbaaaOGaeyyp a0ZaaabCaeaacaWGvbWaa0baaSqaaiaadMgaaeaacaGGOaGaamOBai abgkHiTiaaigdacaGGVaGaaGOmaiaacMcaaaaabaGaamOBaiabg2da 9iaaicdaaeaacaWGobaaniabggHiLdGcdaqadaqaaiabeI7aXbGaay jkaiaawMcaaiaadkhadaahaaWcbeqaaiaad6gacqGHsislcaaIXaGa ai4laiaaikdaaaGccqGHRaWkcaWGvbWaa0baaSqaaiaadMgaaeaaca GGOaGaaGimaiaacMcaaaGccqGHRaWkcaWGvbWaa0baaSqaaiaadMga caGGSaGaaGymaaqaaiaacIcacaaIWaGaaiykaaaakiaadIhadaWgaa WcbaGaaGymaaqabaGccqGHRaWkcaWGvbWaa0baaSqaaiaadMgacaGG SaGaaGOmaaqaaiaacIcacaaIWaGaaiykaaaakiaadIhadaWgaaWcba GaaGOmaaqabaGccqGHRaWkaeaacqGHRaWkcaaMc8UaamyvamaaDaaa leaacaWGPbGaaiilaiaaigdacaaIXaaabaGaaiikaiaaicdacaGGPa aaaOWaaSaaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaaGc baGaaGOmaaaacqGHRaWkcaWGvbWaa0baaSqaaiaadMgacaGGSaGaaG ymaiaaikdaaeaacaGGOaGaaGimaiaacMcaaaGccaWG4bWaaSbaaSqa aiaaigdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabgUcaRi aadwfadaqhaaWcbaGaamyAaiaacYcacaaIYaGaaGOmaaqaaiaacIca caaIWaGaaiykaaaakmaalaaabaGaamiEamaaDaaaleaacaaIYaaaba GaaGOmaaaaaOqaaiaaikdaaaGaey4kaSIaaiOlaiaac6cacaGGUaaa aaa@EE72@                                (4.28)

Здесь θ – полярный угол; величина σ ij (0) = δ i1 δ i1 T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaaca GGOaGaaGimaiaacMcaaaGccqGH9aqpcqaH0oazdaWgaaWcbaGaaeyA aiaabgdaaeqaaOGaeqiTdq2aaSbaaSqaaiaabMgacaqGXaaabeaaki aadsfaaaa@3FC9@ – известна как Т-напряжение; величины σ ij (1/2) , U i (1/2) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaaca GGOaGaeyOeI0IaaGymaiaac+cacaaIYaGaaiykaaaakiaacYcacaaM c8UaaGPaVlaaykW7caWGvbWaa0baaSqaaiaadMgaaeaacaGGOaGaey OeI0IaaGymaiaac+cacaaIYaGaaiykaaaaaaa@4507@  определяются коэффициентами интенсивности напряжений. Последние получаются из общеизвестных выражений для распределения напряжений вблизи вершины трещины (например, [51]) применением уравнений теории упругости (значения КИН для рассматриваемых случаев известны (3.7)):

  U 1 (1/2) = K 1 2 2π cos θ 2 2 1 ν ¯ 1+ ν ¯ cosθcos2θ K 2 2 2π sin θ 2 4+ 1+ ν ¯ cosθ+cos2θ U 2 (1/2) = K 1 2 2π sin θ 2 4+ 1+ ν ¯ cosθ+cos2θ K 2 2 2π cos θ 2 2 1 ν ¯ + 1+ ν ¯ cosθcos2θ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaaceqaaiaadwfadaqhaaWcbaGaaGymaaqaaiaacI cacqGHsislcaaIXaGaai4laiaaikdacaGGPaaaaOGaeyypa0deaaaa aaaaa8qadaWcaaWdaeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaaGcba WdbiaaikdadaGcaaWdaeaapeGaaGOmaiabec8aWbWcbeaaaaGcciGG JbGaai4BaiaacohadaWcaaWdaeaapeGaeqiUdehapaqaa8qacaaIYa aaamaadmaabaGaaGOmamaabmaapaqaa8qacaaIXaGaeyOeI0IafqyV d4MbaebaaiaawIcacaGLPaaacqGHsisldaqadaWdaeaapeGaaGymai abgUcaRiqbe27aUzaaraaacaGLOaGaayzkaaWaaeWaaeaaciGGJbGa ai4BaiaacohacqaH4oqCcqGHsislciGGJbGaai4BaiaacohacaaIYa GaeqiUdehacaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyOeI0cabaWa aSaaa8aabaGaam4samaaBaaaleaacaaIYaaabeaaaOqaa8qacaaIYa WaaOaaa8aabaWdbiaaikdacqaHapaCaSqabaaaaOGaci4CaiaacMga caGGUbWaaSaaa8aabaWdbiabeI7aXbWdaeaapeGaaGOmaaaadaWada qaaiaaisdacqGHRaWkdaqadaWdaeaapeGaaGymaiabgUcaRiqbe27a UzaaraaacaGLOaGaayzkaaWaaeWaaeaaciGGJbGaai4Baiaacohacq aH4oqCcqGHRaWkciGGJbGaai4BaiaacohacaaIYaGaeqiUdehacaGL OaGaayzkaaaacaGLBbGaayzxaaaabaWdaiaadwfadaqhaaWcbaGaaG OmaaqaaiaacIcacqGHsislcaaIXaGaai4laiaaikdacaGGPaaaaOGa eyypa0ZdbmaalaaapaqaaiaadUeadaWgaaWcbaGaaGymaaqabaaake aapeGaaGOmamaakaaapaqaa8qacaaIYaGaeqiWdahaleqaaaaakiGa cohacaGGPbGaaiOBamaalaaapaqaa8qacqaH4oqCa8aabaWdbiaaik daaaWaamWaaeaacqGHsislcaaI0aGaey4kaSYaaeWaa8aabaWdbiaa igdacqGHRaWkcuaH9oGBgaqeaaGaayjkaiaawMcaamaabmaabaGaci 4yaiaac+gacaGGZbGaeqiUdeNaey4kaSIaci4yaiaac+gacaGGZbGa aGOmaiabeI7aXbGaayjkaiaawMcaaaGaay5waiaaw2faaiabgkHiTa qaamaalaaapaqaaiaadUeadaWgaaWcbaGaaGOmaaqabaaakeaapeGa aGOmamaakaaapaqaa8qacaaIYaGaeqiWdahaleqaaaaakiGacogaca GGVbGaai4Camaalaaapaqaa8qacqaH4oqCa8aabaWdbiaaikdaaaWa amWaaeaacaaIYaWaaeWaa8aabaWdbiaaigdacqGHsislcuaH9oGBga qeaaGaayjkaiaawMcaaiabgUcaRmaabmaapaqaa8qacaaIXaGaey4k aSIafqyVd4MbaebaaiaawIcacaGLPaaadaqadaqaaiGacogacaGGVb Gaai4CaiabeI7aXjabgkHiTiGacogacaGGVbGaai4CaiaaikdacqaH 4oqCaiaawIcacaGLPaaaaiaawUfacaGLDbaacaGGUaaaaaa@CD2A@                           (4.29)

Выражения для остальных интересующих величин, входящих в (4.28), получены в п.7:

    U 1 (0) 5.0196M, U 1,1 (0) 2.3606M, U 1,11 (0) 3.423M, U 1,2 (0) = U 2,1 (0) , U 1,12 (0) U 2,11 (0) , U 1,22 (0) = 12 ν ¯ U 1 (11) , U 2 (0) 2.0837T, U 2,1 (0) 3.808T, U 2,11 (0) 4.0268T, U 2,2 (0) = ν ¯ U 1,1 (0) , U 2,12 (0) ν ¯ U 1,11 (0) , U 2,22 (0) ν ¯ U 2,11 (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaadwfadaqhaaWcbaGaaGymaaqaaiaacI cacaaIWaGaaiykaaaakiabgIKi7cbaaaaaaaaapeGaaGynaiaac6ca caaIWaGaaGymaiaaiMdacaaI2aGaamyta8aacaGGSaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaadwfadaqhaaWcbaGaaGymaiaacYcacaaIXaaabaGaaiikaiaaic dacaGGPaaaaOGaeyisIS7dbiabgkHiTiaaikdacaGGUaGaaG4maiaa iAdacaaIWaGaaGOnaiaad2eapaGaaiilaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caWGvbWaa0baaSqaaiaaigdacaGG SaGaaGymaiaaigdaaeaacaGGOaGaaGimaiaacMcaaaGccqGHijYUpe GaeyOeI0IaaG4maiaac6cacaaI0aGaaGOmaiaaiodacaWGnbWdaiaa ykW7caGGSaGaaGPaVlaaykW7caaMc8UaaGPaVdqaaiaadwfadaqhaa WcbaGaaGymaiaacYcacaaIYaaabaGaaiikaiaaicdacaGGPaaaaOGa eyypa0JaeyOeI0IaamyvamaaDaaaleaacaaIYaGaaiilaiaaigdaae aacaGGOaGaaGimaiaacMcaaaGccaGGSaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caWGvbWaa0baaSqaaiaaigdacaGGSaGaaGymaiaaikdaaeaaca GGOaGaaGimaiaacMcaaaGccqGHijYUcqGHsislcaWGvbWaa0baaSqa aiaaikdacaGGSaGaaGymaiaaigdaaeaacaGGOaGaaGimaiaacMcaaa GccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGvbWaa0baaSqaaiaa igdacaGGSaGaaGOmaiaaikdaaeaacaGGOaGaaGimaiaacMcaaaGccq GH9aqppeGaeyOeI0YaaeWaa8aabaWdbiaaigdacqGHsislcaaIYaGa fqyVd4MbaebaaiaawIcacaGLPaaapaGaamyvamaaDaaaleaacaaIXa aabaGaaiikaiaaigdacaaIXaGaaiykaaaakiaacYcacaaMc8UaaGPa VdqaaiaadwfadaqhaaWcbaGaaGOmaaqaaiaacIcacaaIWaGaaiykaa aakiabgIKi7+qacaaIYaGaaiOlaiaaicdacaaI4aGaaG4maiaaiEda caWGubWdaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaamyv amaaDaaaleaacaaIYaGaaiilaiaaigdaaeaacaGGOaGaaGimaiaacM caaaGccqGHijYUpeGaaG4maiaac6cacaaI4aGaaGimaiaaiIdacaWG ubWdaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaamyvamaaDaaaleaacaaIYaGaaiilaiaaigdacaaIXa aabaGaaiikaiaaicdacaGGPaaaaOGaeyisIS7dbiaaisdacaGGUaGa aGimaiaaikdacaaI2aGaaGioaiaadsfapaGaaiilaiaaykW7caaMc8 oabaGaamyvamaaDaaaleaacaaIYaGaaiilaiaaikdaaeaacaGGOaGa aGimaiaacMcaaaGccqGH9aqppeGaeyOeI0YdaiaaykW7peGafqyVd4 MbaebapaGaamyvamaaDaaaleaacaaIXaGaaiilaiaaigdaaeaacaGG OaGaaGimaiaacMcaaaGccaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaadwfadaqhaaWcbaGaaGOmaiaacY cacaaIXaGaaGOmaaqaaiaacIcacaaIWaGaaiykaaaakiabgIKi7+qa cqGHsislpaGaaGPaV=qacuaH9oGBgaqea8aacaWGvbWaa0baaSqaai aaigdacaGGSaGaaGymaiaaigdaaeaacaGGOaGaaGimaiaacMcaaaGc caGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaadwfadaqhaaWcbaGaaGOmaiaacYcacaaIYaGaaGOmaaqaai aacIcacaaIWaGaaiykaaaakiabgIKi7+qacuaH9oGBgaqea8aacaWG vbWaa0baaSqaaiaaikdacaGGSaGaaGymaiaaigdaaeaacaGGOaGaaG imaiaacMcaaaaaaaa@A57F@     (4.30)

U 1 (1/2) = σ 22 (1/2) 2 cos θ 2 3cosθ ν ¯ 1+cosθ + σ 12 (1/2) 2 sin θ 2 5+ ν ¯ + 1+ ν ¯ cosθ U 2 (1/2) = σ 22 (1/2) 2 sin θ 2 3cosθ ν ¯ 1+cosθ σ 12 (1/2) 2 cos θ 2 13 ν ¯ + 1+ ν ¯ cosθ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaadwfadaqhaaWcbaGaaGymaaqaaiaacI cacaaIXaGaai4laiaaikdacaGGPaaaaOGaeyypa0deaaaaaaaaa8qa daWcaaWdaeaacqaHdpWCdaqhaaWcbaGaaGOmaiaaikdaaeaacaGGOa GaaGymaiaac+cacaaIYaGaaiykaaaaaOqaa8qacaaIYaaaaiGacoga caGGVbGaai4Camaalaaapaqaa8qacqaH4oqCa8aabaWdbiaaikdaaa WaamWaaeaacaaIZaGaeyOeI0Iaci4yaiaac+gacaGGZbGaeqiUdeNa eyOeI0IafqyVd4MbaebadaqadaWdaeaapeGaaGymaiabgUcaRiGaco gacaGGVbGaai4CaiabeI7aXbGaayjkaiaawMcaaaGaay5waiaaw2fa aiabgUcaRmaalaaapaqaaiabeo8aZnaaDaaaleaacaaIXaGaaGOmaa qaaiaacIcacaaIXaGaai4laiaaikdacaGGPaaaaaGcbaWdbiaaikda aaGaci4CaiaacMgacaGGUbWaaSaaa8aabaWdbiabeI7aXbWdaeaape GaaGOmaaaadaWadaqaaiaaiwdacqGHRaWkcuaH9oGBgaqeaiabgUca Rmaabmaapaqaa8qacaaIXaGaey4kaSIafqyVd4MbaebaaiaawIcaca GLPaaaciGGJbGaai4BaiaacohacqaH4oqCaiaawUfacaGLDbaaaeaa paGaamyvamaaDaaaleaacaaIYaaabaGaaiikaiaaigdacaGGVaGaaG OmaiaacMcaaaGccqGH9aqppeWaaSaaa8aabaGaeq4Wdm3aa0baaSqa aiaaikdacaaIYaaabaGaaiikaiaaigdacaGGVaGaaGOmaiaacMcaaa aakeaapeGaaGOmaaaaciGGZbGaaiyAaiaac6gadaWcaaWdaeaapeGa eqiUdehapaqaa8qacaaIYaaaamaadmaabaGaaG4maiabgkHiTiGaco gacaGGVbGaai4CaiabeI7aXjabgkHiTiqbe27aUzaaraWaaeWaa8aa baWdbiaaigdacqGHRaWkciGGJbGaai4BaiaacohacqaH4oqCaiaawI cacaGLPaaaaiaawUfacaGLDbaacqGHsisldaWcaaWdaeaacqaHdpWC daqhaaWcbaGaaGymaiaaikdaaeaacaGGOaGaaGymaiaac+cacaaIYa GaaiykaaaaaOqaa8qacaaIYaaaaiGacogacaGGVbGaai4Camaalaaa paqaa8qacqaH4oqCa8aabaWdbiaaikdaaaWaamWaaeaacaaIXaGaey OeI0IaaG4maiqbe27aUzaaraGaey4kaSYaaeWaa8aabaWdbiaaigda cqGHRaWkcuaH9oGBgaqeaaGaayjkaiaawMcaaiGacogacaGGVbGaai 4CaiabeI7aXbGaay5waiaaw2faaiaacYcaaaaa@BC38@  (4.31)

U 1 (3/2) = σ 22 (3/2) 2 cos θ 2 5+ ν ¯ 7 ν ¯ cosθ + σ 12 (3/2) 2 sin θ 2 7+3 ν ¯ + 11+3 ν ¯ cosθ U 2 (3/2) = σ 22 (3/2) 2 sin θ 2 13 ν ¯ + 53 ν ¯ cosθ σ 22 (3/2) 2 cos θ 2 1+5 ν ¯ + 17 ν ¯ cosθ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaadwfadaqhaaWcbaGaaGymaaqaaiaacI cacaaIZaGaai4laiaaikdacaGGPaaaaOGaeyypa0JaeyOeI0ceaaaa aaaaa8qadaWcaaWdaeaapeGaeq4Wdm3damaaDaaaleaapeGaaGOmai aaikdaa8aabaWdbiaacIcacaaIZaGaai4laiaaikdacaGGPaaaaaGc paqaa8qacaaIYaaaaiGacogacaGGVbGaai4Camaalaaapaqaa8qacq aH4oqCa8aabaWdbiaaikdaaaWaamWaaeaacaaI1aGaey4kaSIafqyV d4MbaebacqGHsisldaqadaWdaeaapeGaaG4naiabgkHiTiqbe27aUz aaraaacaGLOaGaayzkaaGaci4yaiaac+gacaGGZbGaeqiUdehacaGL BbGaayzxaaGaey4kaSYaaSaaa8aabaWdbiabeo8aZ9aadaqhaaWcba WdbiaaigdacaaIYaaapaqaa8qacaGGOaGaaG4maiaac+cacaaIYaGa aiykaaaaaOWdaeaapeGaaGOmaaaaciGGZbGaaiyAaiaac6gadaWcaa WdaeaapeGaeqiUdehapaqaa8qacaaIYaaaamaadmaabaGaaG4naiab gUcaRiaaiodacuaH9oGBgaqeaiabgUcaRmaabmaapaqaa8qacaaIXa GaaGymaiabgUcaRiaaiodacuaH9oGBgaqeaaGaayjkaiaawMcaaiGa cogacaGGVbGaai4CaiabeI7aXbGaay5waiaaw2faaaqaa8aacaWGvb Waa0baaSqaaiaaikdaaeaacaGGOaGaaG4maiaac+cacaaIYaGaaiyk aaaakiabg2da98qadaWcaaWdaeaapeGaeq4Wdm3damaaDaaaleaape GaaGOmaiaaikdaa8aabaWdbiaacIcacaaIZaGaai4laiaaikdacaGG PaaaaaGcpaqaa8qacaaIYaaaaiGacohacaGGPbGaaiOBamaalaaapa qaa8qacqaH4oqCa8aabaWdbiaaikdaaaWaamWaaeaacaaIXaGaeyOe I0IaaG4maiqbe27aUzaaraGaey4kaSYaaeWaa8aabaWdbiaaiwdacq GHsislcaaIZaGafqyVd4MbaebaaiaawIcacaGLPaaaciGGJbGaai4B aiaacohacqaH4oqCaiaawUfacaGLDbaacqGHsisldaWcaaWdaeaape Gaeq4Wdm3damaaDaaaleaapeGaaGOmaiaaikdaa8aabaWdbiaacIca caaIZaGaai4laiaaikdacaGGPaaaaaGcpaqaa8qacaaIYaaaaiGaco gacaGGVbGaai4Camaalaaapaqaa8qacqaH4oqCa8aabaWdbiaaikda aaWaamWaaeaacaaIXaGaey4kaSIaaGynaiqbe27aUzaaraGaey4kaS YaaeWaa8aabaWdbiaaigdacqGHsislcaaI3aGafqyVd4Mbaebaaiaa wIcacaGLPaaaciGGJbGaai4BaiaacohacqaH4oqCaiaawUfacaGLDb aacaGGUaaaaaa@BDB4@  (4.32)

Здесь

σ 22 (1/2) = lim x 1 0+ σ 22 x 1 ,0 K 1 2π x 1 1/2 σ 22 (0) x 1 1/2 5.587M σ 12 (1/2) = lim x 1 0+ σ 12 x 1 ,0 K 2 2π x 1 1/2 σ 12 (0) x 1 1/2 1.196T σ 22 (3/2) = lim x 1 0+ σ 22 x 1 ,0 K 1 2π x 1 1/2 σ 22 (0) σ 22 (1/2) x 1 1/2 σ 22 (1) x 1 x 1 3/2 3.765M σ 12 (3/2) = lim x 1 0+ σ 12 x 1 ,0 K 2 2π x 1 1/2 σ 12 (0) σ 12 (1/2) x 1 1/2 σ 12 (1) x 1 x 1 3/2 0.2988T. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaaceqaaiabeo8aZnaaDaaaleaacaaIYaGaaGOmaa qaaiaacIcacaaIXaGaai4laiaaikdacaGGPaaaaOGaeyypa0ZaaCbe aeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhadaWgaaadbaGaaGymaa qabaWccqGHsgIRcaaIWaGaey4kaScabeaakmaadmaabaGaeq4Wdm3a a0baaSqaaiaaikdacaaIYaaabaaaaOWaaeWaaeaacaWG4bWaaSbaaS qaaiaaigdaaeqaaOGaaiilaiaaicdaaiaawIcacaGLPaaacqGHsisl caWGlbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaaIYaGaeqiWda NaamiEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaamaaCaaa leqabaGaeyOeI0IaaGymaiaac+cacaaIYaaaaOGaeyOeI0Iaeq4Wdm 3aa0baaSqaaiaaikdacaaIYaaabaGaaiikaiaaicdacaGGPaaaaaGc caGLBbGaayzxaaGaamiEamaaDaaaleaacaaIXaaabaGaaGymaiaac+ cacaaIYaaaaOGaeyisISleaaaaaaaaa8qacqGHsislcaaI1aGaaiOl aiaaiwdacaaI4aGaaG4naiaad2eaaeaapaGaeq4Wdm3aa0baaSqaai aaigdacaaIYaaabaGaaiikaiaaigdacaGGVaGaaGOmaiaacMcaaaGc cqGH9aqpdaWfqaqaaiGacYgacaGGPbGaaiyBaaWcbaGaamiEamaaBa aameaacaaIXaaabeaaliabgkziUkaaicdacqGHRaWkaeqaaOWaamWa aeaacqaHdpWCdaqhaaWcbaGaaGymaiaaikdaaeaaaaGcdaqadaqaai aadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaGimaaGaayjkaiaa wMcaaiabgkHiTiaadUeadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaai aaikdacqaHapaCcaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaacqGHsislcaaIXaGaai4laiaaikdaaaGccq GHsislcqaHdpWCdaqhaaWcbaGaaGymaiaaikdaaeaacaGGOaGaaGim aiaacMcaaaaakiaawUfacaGLDbaacaWG4bWaa0baaSqaaiaaigdaae aacaaIXaGaai4laiaaikdaaaGccqGHijYUpeGaeyOeI0IaaGymaiaa c6cacaaIXaGaaGyoaiaaiAdacaWGubaabaWdaiabeo8aZnaaDaaale aacaaIYaGaaGOmaaqaaiaacIcacaaIZaGaai4laiaaikdacaGGPaaa aOGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhada WgaaadbaGaaGymaaqabaWccqGHsgIRcaaIWaGaey4kaScabeaakmaa dmaabaGaeq4Wdm3aa0baaSqaaiaaikdacaaIYaaabaaaaOWaaeWaae aacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaaicdaaiaawIca caGLPaaacqGHsislcaWGlbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaae aacaaIYaGaeqiWdaNaamiEamaaBaaaleaacaaIXaaabeaaaOGaayjk aiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaiaac+cacaaIYaaaaO GaeyOeI0Iaeq4Wdm3aa0baaSqaaiaaikdacaaIYaaabaGaaiikaiaa icdacaGGPaaaaOGaeyOeI0Iaeq4Wdm3aa0baaSqaaiaaikdacaaIYa aabaGaaiikaiaaigdacaGGVaGaaGOmaiaacMcaaaGccaWG4bWaa0ba aSqaaiaaigdaaeaacaaIXaGaai4laiaaikdaaaGccqGHsislcqaHdp WCdaqhaaWcbaGaaGOmaiaaikdaaeaacaGGOaGaaGymaiaacMcaaaGc caWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLBbGaayzxaaGaamiEam aaDaaaleaacaaIXaaabaGaaG4maiaac+cacaaIYaaaaOGaeyisISla baGaeyisIS7dbiaaiodacaGGUaGaaG4naiaaiAdacaaI1aGaamytaa qaa8aacqaHdpWCdaqhaaWcbaGaaGymaiaaikdaaeaacaGGOaGaaG4m aiaac+cacaaIYaGaaiykaaaakiabg2da9maaxababaGaciiBaiaacM gacaGGTbaaleaacaWG4bWaaSbaaWqaaiaaigdaaeqaaSGaeyOKH4Qa aGimaiabgUcaRaqabaGcdaWadaqaaiabeo8aZnaaDaaaleaacaaIXa GaaGOmaaqaaaaakmaabmaabaGaamiEamaaBaaaleaacaaIXaaabeaa kiaacYcacaaIWaaacaGLOaGaayzkaaGaeyOeI0Iaam4samaaBaaale aacaaIYaaabeaakmaabmaabaGaaGOmaiabec8aWjaadIhadaWgaaWc baGaaGymaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTi aaigdacaGGVaGaaGOmaaaakiabgkHiTiabeo8aZnaaDaaaleaacaaI XaGaaGOmaaqaaiaacIcacaaIWaGaaiykaaaakiabgkHiTiabeo8aZn aaDaaaleaacaaIXaGaaGOmaaqaaiaacIcacaaIXaGaai4laiaaikda caGGPaaaaOGaamiEamaaDaaaleaacaaIXaaabaGaaGymaiaac+caca aIYaaaaOGaeyOeI0Iaeq4Wdm3aa0baaSqaaiaaigdacaaIYaaabaGa aiikaiaaigdacaGGPaaaaOGaamiEamaaBaaaleaacaaIXaaabeaaaO Gaay5waiaaw2faaiaadIhadaqhaaWcbaGaaGymaaqaaiaaiodacaGG VaGaaGOmaaaakiabgIKi7cqaaiabgIKi7kaaicdapeGaaiOlaiaaik dacaaI5aGaaGioaiaaiIdacaWGubGaaiOlaaaaaa@3EDD@  (4.33)

Выражения, зависящие от декартовых координат, получаются подстановкой

  r= x 1 2 + x 2 2 ,cosθ= x 1 x 1 2 + x 2 2 ,cos2θ= x 1 2 x 2 2 x 1 2 + x 2 2 , cos θ 2 = 1 2 1+ x 1 x 1 2 + x 2 2 ,sin θ 2 = 1 2 1 x 1 x 1 2 + x 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiaadkhacqGH9aqpdaGcaaqaaiaadIhada qhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcaWG4bWaa0baaSqa aiaaikdaaeaacaaIYaaaaaqabaGccaGGSaGaaGPaVlaaykW7caaMc8 oeaaaaaaaaa8qaciGGJbGaai4BaiaacohacqaH4oqCcqGH9aqpdaWc aaWdaeaapeGaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8 qadaGcaaWdaeaapeGaamiEa8aadaqhaaWcbaWdbiaaigdaa8aabaWd biaaikdaaaGccqGHRaWkcaWG4bWdamaaDaaaleaapeGaaGOmaaWdae aapeGaaGOmaaaaaeqaaaaakiaacYcacaaMc8UaaGPaVlGacogacaGG VbGaai4CaiaaikdacqaH4oqCcqGH9aqpdaWcaaWdaeaapeGaamiEa8 aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaGccqGHsislcaWG 4bWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaaaaaOWdaeaape GaamiEa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaGccqGH RaWkcaWG4bWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaaaaaa GccaGGSaGaaGPaVdqaaiGacogacaGGVbGaai4Camaalaaapaqaa8qa cqaH4oqCa8aabaWdbiaaikdaaaGaeyypa0ZaaSaaa8aabaWdbiaaig daa8aabaWdbmaakaaapaqaa8qacaaIYaaaleqaaaaakmaakaaapaqa a8qacaaIXaGaey4kaSYaaSaaa8aabaWdbiaadIhapaWaaSbaaSqaa8 qacaaIXaaapaqabaaakeaapeWaaOaaa8aabaWdbiaadIhapaWaa0ba aSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaey4kaSIaamiEa8aada qhaaWcbaWdbiaaikdaa8aabaWdbiaaikdaaaaabeaaaaaabeaakiaa cYcacaaMc8UaaGPaVlaaykW7caGGZbGaaiyAaiaac6gadaWcaaWdae aapeGaeqiUdehapaqaa8qacaaIYaaaaiabg2da9maalaaapaqaa8qa caaIXaaapaqaa8qadaGcaaWdaeaapeGaaGOmaaWcbeaaaaGcdaGcaa WdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8qacaWG4bWdamaaBaaa leaapeGaaGymaaWdaeqaaaGcbaWdbmaakaaapaqaa8qacaWG4bWdam aaDaaaleaapeGaaGymaaWdaeaapeGaaGOmaaaakiabgUcaRiaadIha paWaa0baaSqaa8qacaaIYaaapaqaa8qacaaIYaaaaaqabaaaaaqaba aaaaa@9454@                                (4.34)

5. Численные расчеты. Значения КИН от действия произвольной силы Q 1 x 1 0 , x 2 0 , Q 2 x 1 0 , x 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGrbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaae aacaWG4bWaa0baaSqaaiaaigdaaeaacaaIWaaaaOGaaiilaiaadIha daqhaaWcbaGaaGOmaaqaaiaaicdaaaaakiaawIcacaGLPaaacaGGSa GaaGPaVlaadgfadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadIha daqhaaWcbaGaaGymaaqaaiaaicdaaaGccaGGSaGaamiEamaaDaaale aacaaIYaaabaGaaGimaaaaaOGaayjkaiaawMcaaaaa@45ED@ , действующей в точке x 1 0 , x 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqadaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaGccaGGSaGaamiEamaaDaaaleaacaaIYaaabaGaaGimaaaa aOGaayjkaiaawMcaaaaa@3897@ , получаются подстановкой в (3.8) производных смещений u 1,1 x 1 0 , x 2 0 , u 2.1 x 1 0 , x 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG1bWaaSbaaSqaaiaaigdacaGGSaGaaGymaa qabaGcdaqadaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaicdaaaGc caGGSaGaamiEamaaDaaaleaacaaIYaaabaGaaGimaaaaaOGaayjkai aawMcaaiaacYcacaaMc8UaamyDamaaBaaaleaacaaIYaGaaiOlaiaa igdaaeqaaOWaaeWaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIWa aaaOGaaiilaiaadIhadaqhaaWcbaGaaGOmaaqaaiaaicdaaaaakiaa wIcacaGLPaaaaaa@490D@ , рассчитанных согласно (4.22), (4.23) (4.24), (4.25), либо (4.28)–(4.34).

В силу симметрии геометрии, в ряде ситуаций удобно рассмотреть общий случай как суперпозицию четырех вариантов приложения пар сил:

·        пара нормальных сил, приложенных на равноотстоящих от берегов трещины расстояниях и действующих в противоположном направлении, Q 1 x 1 0 , x 2 0 = Q 1 x 1 0 , x 2 0 = Q FD x 1 0 , x 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGrbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaae aacaWG4bWaa0baaSqaaiaaigdaaeaacaaIWaaaaOGaaiilaiaadIha daqhaaWcbaGaaGOmaaqaaiaaicdaaaaakiaawIcacaGLPaaacqGH9a qpcqGHsislcaWGrbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWG 4bWaa0baaSqaaiaaigdaaeaacaaIWaaaaOGaaiilaiaadIhadaqhaa WcbaGaaGOmaaqaaiaaicdaaaaakiaawIcacaGLPaaacqGH9aqpcaWG rbWaaSbaaSqaaiaadAeacaWGebaabeaakmaabmaabaGaamiEamaaDa aaleaacaaIXaaabaGaaGimaaaakiaacYcacaWG4bWaa0baaSqaaiaa ikdaaeaacaaIWaaaaaGccaGLOaGaayzkaaaaaa@50D6@ – (вариант (FD).

·        пара нормальных сил, приложенных на равноотстоящих от берегов трещины расстояниях и действующих в противоположном направлении, Q 1 x 1 0 , x 2 0 = Q 1 x 1 0 , x 2 0 = Q FA x 1 0 , x 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGrbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaae aacaWG4bWaa0baaSqaaiaaigdaaeaacaaIWaaaaOGaaiilaiaadIha daqhaaWcbaGaaGOmaaqaaiaaicdaaaaakiaawIcacaGLPaaacqGH9a qpcaWGrbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWG4bWaa0ba aSqaaiaaigdaaeaacaaIWaaaaOGaaiilaiaadIhadaqhaaWcbaGaaG OmaaqaaiaaicdaaaaakiaawIcacaGLPaaacqGH9aqpcaWGrbWaaSba aSqaaiaadAeacaWGbbaabeaakmaabmaabaGaamiEamaaDaaaleaaca aIXaaabaGaaGimaaaakiaacYcacaWG4bWaa0baaSqaaiaaikdaaeaa caaIWaaaaaGccaGLOaGaayzkaaaaaa@4FE6@ – (вариант FA).

·        пара продольных сил, приложенных на равноотстоящих от берегов трещины расстояниях и действующих в противоположном направлении, Q 2 x 1 0 , x 2 0 = Q 2 x 1 0 , x 2 0 = Q TA x 1 0 , x 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGrbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaae aacaWG4bWaa0baaSqaaiaaigdaaeaacaaIWaaaaOGaaiilaiaadIha daqhaaWcbaGaaGOmaaqaaiaaicdaaaaakiaawIcacaGLPaaacqGH9a qpcqGHsislcaWGrbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWG 4bWaa0baaSqaaiaaigdaaeaacaaIWaaaaOGaaiilaiaadIhadaqhaa WcbaGaaGOmaaqaaiaaicdaaaaakiaawIcacaGLPaaacqGH9aqpcaWG rbWaaSbaaSqaaiaadsfacaWGbbaabeaakmaabmaabaGaamiEamaaDa aaleaacaaIXaaabaGaaGimaaaakiaacYcacaWG4bWaa0baaSqaaiaa ikdaaeaacaaIWaaaaaGccaGLOaGaayzkaaaaaa@50E3@ – (вариант (TA).

·        пара продольных сил, приложенных на равноотстоящих от берегов трещины расстояниях и действующих в противоположном направлении, Q 2 x 1 0 , x 2 0 = Q 2 x 1 0 , x 2 0 = Q TD x 1 0 , x 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGrbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaae aacaWG4bWaa0baaSqaaiaaigdaaeaacaaIWaaaaOGaaiilaiaadIha daqhaaWcbaGaaGOmaaqaaiaaicdaaaaakiaawIcacaGLPaaacqGH9a qpcaWGrbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWG4bWaa0ba aSqaaiaaigdaaeaacaaIWaaaaOGaaiilaiaadIhadaqhaaWcbaGaaG OmaaqaaiaaicdaaaaakiaawIcacaGLPaaacqGH9aqpcaWGrbWaaSba aSqaaiaadsfacaWGebaabeaakmaabmaabaGaamiEamaaDaaaleaaca aIXaaabaGaaGimaaaakiaacYcacaWG4bWaa0baaSqaaiaaikdaaeaa caaIWaaaaaGccaGLOaGaayzkaaaaaa@4FF9@ – (вариант TD).

В силу симметрии в первом и четвертом случаях будет присутствовать только нормальная мода КИН, а во втором и третьем – только сдвиговая:

  K 1 FD Q FD = E ¯ u 2,1 M x 1 0 , x 2 0 2 3 , K 1 TD Q TD = E ¯ u 1,1 M x 1 0 , x 2 0 2 3 , K 2 TA Q TA = E ¯ u 1,1 T x 1 0 , x 2 0 2 , K 2 FA Q FA = E ¯ u 2,1 T x 1 0 , x 2 0 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaaiaadUeadaqhaaWcbaGaaGymaaqaai aadAeacaWGebaaaaGcbaGaamyuamaaBaaaleaacaWGgbGaamiraaqa baaaaOGaeyypa0JaeyOeI0YaaSaaaeaaceWGfbGbaebacaWG1bWaa0 baaSqaaiaaikdacaGGSaGaaGymaaqaaiaad2eaaaGcdaqadaqaaiaa dIhadaqhaaWcbaGaaGymaaqaaiaaicdaaaGccaGGSaGaamiEamaaDa aaleaacaaIYaaabaGaaGimaaaaaOGaayjkaiaawMcaaaqaaiaaikda daGcaaqaaiaaiodaaSqabaaaaOGaaiilaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8+aaSaaaeaacaWGlbWaa0baaSqaaiaaigdaaeaacaWG ubGaamiraaaaaOqaaiaadgfadaWgaaWcbaGaamivaiaadseaaeqaaa aakiabg2da9iabgkHiTmaalaaabaGabmyrayaaraGaamyDamaaDaaa leaacaaIXaGaaiilaiaaigdaaeaacaWGnbaaaOWaaeWaaeaacaWG4b Waa0baaSqaaiaaigdaaeaacaaIWaaaaOGaaiilaiaadIhadaqhaaWc baGaaGOmaaqaaiaaicdaaaaakiaawIcacaGLPaaaaeaacaaIYaWaaO aaaeaacaaIZaaaleqaaaaakiaacYcacaaMc8UaaGPaVlaaykW7daWc aaqaaiaadUeadaqhaaWcbaGaaGOmaaqaaiaadsfacaWGbbaaaaGcba GaamyuamaaBaaaleaacaWGubGaamyqaaqabaaaaOGaeyypa0JaeyOe I0YaaSaaaeaaceWGfbGbaebacaWG1bWaa0baaSqaaiaaigdacaGGSa GaaGymaaqaaiaadsfaaaGcdaqadaqaaiaadIhadaqhaaWcbaGaaGym aaqaaiaaicdaaaGccaGGSaGaamiEamaaDaaaleaacaaIYaaabaGaaG imaaaaaOGaayjkaiaawMcaaaqaaiaaikdaaaGaaiilaiaaykW7caaM c8UaaGPaVpaalaaabaGaam4samaaDaaaleaacaaIYaaabaGaamOrai aadgeaaaaakeaacaWGrbWaaSbaaSqaaiaadAeacaWGbbaabeaaaaGc cqGH9aqpcqGHsisldaWcaaqaaiqadweagaqeaiaadwhadaqhaaWcba GaaGOmaiaacYcacaaIXaaabaGaamivaaaakmaabmaabaGaamiEamaa DaaaleaacaaIXaaabaGaaGimaaaakiaacYcacaWG4bWaa0baaSqaai aaikdaaeaacaaIWaaaaaGccaGLOaGaayzkaaaabaGaaGOmaaaaaaa@9B85@ .                                                                    (5.1)

Далее рассмотрены некоторые частные случаи.

5.1. Силы, приложенные к берегам трещины. Данная ситуация представляется наиболее интересной. Именно ее исследованию, и в частности случаю нагружения симметрично расположенной системой сил, посвящено большинство работ [24, 31–33].

Для точек, удаленных от вершины трещины, подстановка (4.22) в (5.1) дает:

  K 1 FD Q FD = 12 x 1 0 +δ + 2 π 3/2 Re k=1 R k (2) B 22 p k (1) p k (1) exp p k (1) x 1 , K 1 TD Q TD = 3 + 2 π 3/2 Re k=1 R k (2) B 12 p k (1) p k (1) exp p k (1) x 1 , K 2 TA Q TA =2+ 2 π Re k=1 R k (1) B 11 p k (1) exp p k (1) x 1 , K 2 FA Q FA =3 x 1 0 δ m + 2 π Re k=1 R k (1) B 21 p k (1) exp p k (1) x 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaamaalaaabaGaam4samaaDaaaleaacaaIXa aabaGaamOraiaadseaaaaakeaacaWGrbWaaSbaaSqaaiaadAeacaWG ebaabeaaaaGccqGH9aqpdaGcaaqaaiaaigdacaaIYaaaleqaaOWaae WaaeaacqGHsislcaWG4bWaa0baaSqaaiaaigdaaeaacaaIWaaaaOGa ey4kaSIaeqiTdqgacaGLOaGaayzkaaGaey4kaSYaaSaaaeaadaGcaa qaaiaaikdaaSqabaaakeaacqaHapaCdaahaaWcbeqaaiaaiodacaGG VaGaaGOmaaaaaaGccaaMc8UaciOuaiaacwgacaaMc8+aaabCaeaaca WGsbWaa0baaSqaaiaadUgaaeaacaGGOaGaaGOmaiaacMcaaaaabaGa am4Aaiabg2da9iaaigdaaeaacqGHEisPa0GaeyyeIuoakiaadkeada WgaaWcbaGaaGOmaiaaikdaaeqaaOWaaeWaaeaacaWGWbWaa0baaSqa aiaadUgaaeaacaGGOaGaaGymaiaacMcaaaaakiaawIcacaGLPaaaca WGWbWaa0baaSqaaiaadUgaaeaacaGGOaGaaGymaiaacMcaaaGcciGG LbGaaiiEaiaacchadaqadaqaaiaadchadaqhaaWcbaGaam4Aaaqaai aacIcacaaIXaGaaiykaaaakiaadIhadaWgaaWcbaGaaGymaaqabaaa kiaawIcacaGLPaaacaGGSaaabaWaaSaaaeaacaWGlbWaa0baaSqaai aaigdaaeaacaWGubGaamiraaaaaOqaaiaadgfadaWgaaWcbaGaamiv aiaadseaaeqaaaaakiabg2da9iabgkHiTmaakaaabaGaaG4maaWcbe aakiabgUcaRiaaykW7daWcaaqaamaakaaabaGaaGOmaaWcbeaaaOqa aiabec8aWnaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaaaakiGack facaGGLbWaaabCaeaacaWGsbWaa0baaSqaaiaadUgaaeaacaGGOaGa aGOmaiaacMcaaaaabaGaam4Aaiabg2da9iaaigdaaeaacqGHEisPa0 GaeyyeIuoakiaadkeadaWgaaWcbaGaaGymaiaaikdaaeqaaOWaaeWa aeaacaWGWbWaa0baaSqaaiaadUgaaeaacaGGOaGaaGymaiaacMcaaa aakiaawIcacaGLPaaacaWGWbWaa0baaSqaaiaadUgaaeaacaGGOaGa aGymaiaacMcaaaGcciGGLbGaaiiEaiaacchadaqadaqaaiaadchada qhaaWcbaGaam4AaaqaaiaacIcacaaIXaGaaiykaaaakiaadIhadaWg aaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaGGSaaabaWaaSaaae aacaWGlbWaa0baaSqaaiaaikdaaeaacaWGubGaamyqaaaaaOqaaiaa dgfadaWgaaWcbaGaamivaiaadgeaaeqaaaaakiabg2da9iaaikdacq GHRaWkcaaMc8+aaSaaaeaadaGcaaqaaiaaikdaaSqabaaakeaadaGc aaqaaiabec8aWbWcbeaaaaGccaaMc8UaciOuaiaacwgadaaeWbqaai aadkfadaqhaaWcbaGaam4AaaqaaiaacIcacaaIXaGaaiykaaaaaeaa caWGRbGaeyypa0JaaGymaaqaaiabg6HiLcqdcqGHris5aOGaamOqam aaBaaaleaacaaIXaGaaGymaaqabaGcdaqadaqaaiaadchadaqhaaWc baGaam4AaaqaaiaacIcacaaIXaGaaiykaaaaaOGaayjkaiaawMcaai GacwgacaGG4bGaaiiCamaabmaabaGaamiCamaaDaaaleaacaWGRbaa baGaaiikaiaaigdacaGGPaaaaOGaamiEamaaBaaaleaacaaIXaaabe aaaOGaayjkaiaawMcaaiaaykW7caGGSaaabaWaaSaaaeaacaWGlbWa a0baaSqaaiaaikdaaeaacaWGgbGaamyqaaaaaOqaaiaadgfadaWgaa WcbaGaamOraiaadgeaaeqaaaaakiabg2da9iaaiodadaqadaqaaiaa dIhadaqhaaWcbaGaaGymaaqaaiaaicdaaaGccqGHsislcqaH0oazda WgaaWcbaGaamyBaaqabaaakiaawIcacaGLPaaacqGHRaWkdaWcaaqa amaakaaabaGaaGOmaaWcbeaaaOqaamaakaaabaGaeqiWdahaleqaaa aakiaaykW7caaMc8UaciOuaiaacwgadaaeWbqaaiaadkfadaqhaaWc baGaam4AaaqaaiaacIcacaaIXaGaaiykaaaaaeaacaWGRbGaeyypa0 JaaGymaaqaaiabg6HiLcqdcqGHris5aOGaamOqamaaBaaaleaacaaI YaGaaGymaaqabaGcdaqadaqaaiaadchadaqhaaWcbaGaam4Aaaqaai aacIcacaaIXaGaaiykaaaaaOGaayjkaiaawMcaaiGacwgacaGG4bGa aiiCamaabmaabaGaamiCamaaDaaaleaacaWGRbaabaGaaiikaiaaig dacaGGPaaaaOGaamiEamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaa wMcaaiaaykW7caGGUaaaaaa@09AA@               (5.2)

Здесь величины B ij MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGcbWaaSbaaSqaaiaadMgacaWGQbaabeaaaa a@33DA@  определяются (4.17). Учет лишь первых двух вычетов дает достаточно простые формулы:

     K 1 FD Q FD = 12 x 1 0 +δ +exp α 1 x 1 0 0.5205cos β 1 x 1 0 0.1660sin β 1 x 1 0 + +exp α 2 x 1 0 0.4270cos β 2 x 1 0 0.06139sin β 2 x 1 0 +O exp α 3 x 1 0 , K 1 TD Q TD 3 exp  α 1 x 1 0 0.06113cos β 1 x 1 0 +0.4905sin β 1 x 1 0 exp  α 2 x 1 0 0.0104cos β 2 x 1 0 +0.4128sin β 2 x 1 0 +O exp α 3 x 1 0 , K 2 TA Q TA 2+exp  α 1 x 1 0 0.5555cos β 1 x 1 0 +0.09998sin β 1 x 1 0 + +exp  α 2 x 1 0 0.4536cos β 2 x 1 0 +0.06658sin β 2 x 1 0 +O exp α 3 x 1 0 , K 2 FA Q FA 3 x 1 0 δ m +exp  α 1 x 1 0 0.0042cos β 1 x 1 0 +0.6239sin β 1 x 1 0 + +exp  α 2 x 1 0 0.0135cos v 2 x 1 0 +0.4788sin β 2 x 1 0 +O exp α 3 x 1 0 , α 1 4.2124, β 1 2.2507, α 2 7.4976, β 2 2.7687, α 3 10.713. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaaceqaamaalaaabaGaam4samaaDaaaleaacaaIXa aabaGaamOraiaadseaaaaakeaacaWGrbWaaSbaaSqaaiaadAeacaWG ebaabeaaaaGccqGH9aqpdaGcaaqaaiaaigdacaaIYaaaleqaaOWaae WaaeaacqGHsislcaWG4bWaa0baaSqaaiaaigdaaeaacaaIWaaaaOGa ey4kaSIaeqiTdqgacaGLOaGaayzkaaGaey4kaSceaaaaaaaaa8qaci GGLbGaaiiEaiaacchacaaMc8+daiabeg7aHnaaBaaaleaacaaIXaaa beaak8qacaWG4bWdamaaDaaaleaacaaIXaaabaGaaGimaaaak8qada qadaWdaeaapeGaaGimaiaac6cacaaI1aGaaGOmaiaaicdacaaI1aGa ci4yaiaac+gacaGGZbGaeqOSdi2aaSbaaSqaaiaaigdaaeqaaOGaam iEa8aadaqhaaWcbaGaaGymaaqaaiaaicdaaaGcpeGaeyOeI0IaaGim aiaac6cacaaIXaGaaGOnaiaaiAdacaaIWaGaci4CaiaacMgacaGGUb GaeqOSdi2aaSbaaSqaaiaaigdaaeqaaOGaamiEa8aadaqhaaWcbaGa aGymaaqaaiaaicdaaaaak8qacaGLOaGaayzkaaGaey4kaScabaGaey 4kaSIaaGjbVlGacwgacaGG4bGaaiiCaiaaykW7paGaeqySde2aaSba aSqaaiaaikdaaeqaaOWdbiaadIhapaWaa0baaSqaaiaaigdaaeaaca aIWaaaaOWdbmaabmaapaqaa8qacaaIWaGaaiOlaiaaisdacaaIYaGa aG4naiaaicdaciGGJbGaai4BaiaacohacqaHYoGydaWgaaWcbaGaaG OmaaqabaGccaWG4bWdamaaDaaaleaacaaIXaaabaGaaGimaaaak8qa cqGHsislcaaIWaGaaiOlaiaaicdacaaI2aGaaGymaiaaiodacaaI5a Gaci4CaiaacMgacaGGUbGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGa amiEa8aadaqhaaWcbaGaaGymaaqaaiaaicdaaaaak8qacaGLOaGaay zkaaGaey4kaSIaam4tamaabmaabaGaciyzaiaacIhacaGGWbWdaiab eg7aHnaaBaaaleaacaaIZaaabeaak8qacaWG4bWdamaaDaaaleaaca aIXaaabaGaaGimaaaaaOWdbiaawIcacaGLPaaacaGGSaaabaWdamaa laaabaGaam4samaaDaaaleaacaaIXaaabaGaamivaiaadseaaaaake aacaWGrbWaaSbaaSqaaiaadsfacaWGebaabeaaaaGccqGHsisldaGc aaqaaiaaiodaaSqabaGccqGHsislpeGaciyzaiaacIhacaGGWbGaae iia8aacqaHXoqydaWgaaWcbaGaaGymaaqabaGcpeGaamiEa8aadaqh aaWcbaGaaGymaaqaaiaaicdaaaGcpeWaaeWaa8aabaWdbiaaicdaca GGUaGaaGimaiaaiAdacaaIXaGaaGymaiaaiodaciGGJbGaai4Baiaa cohacqaHYoGydaWgaaWcbaGaaGymaaqabaGccaWG4bWdamaaDaaale aacaaIXaaabaGaaGimaaaakiabgUcaR8qacaaIWaGaaiOlaiaaisda caaI5aGaaGimaiaaiwdaciGGZbGaaiyAaiaac6gacqaHYoGydaWgaa WcbaGaaGymaaqabaGccaWG4bWdamaaDaaaleaacaaIXaaabaGaaGim aaaaaOWdbiaawIcacaGLPaaacqGHsislaeaacqGHsislciGGLbGaai iEaiaacchacaqGGaWdaiabeg7aHnaaBaaaleaacaaIYaaabeaak8qa caWG4bWdamaaDaaaleaacaaIXaaabaGaaGimaaaak8qadaqadaWdae aapeGaaGimaiaac6cacaaIWaGaaGymaiaaicdacaaI0aGaci4yaiaa c+gacaGGZbGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaamiEa8aada qhaaWcbaGaaGymaaqaaiaaicdaaaGccqGHRaWkpeGaaGimaiaac6ca caaI0aGaaGymaiaaikdacaaI4aGaci4CaiaacMgacaGGUbGaeqOSdi 2aaSbaaSqaaiaaikdaaeqaaOGaamiEa8aadaqhaaWcbaGaaGymaaqa aiaaicdaaaaak8qacaGLOaGaayzkaaGaey4kaSIaam4tamaabmaaba GaciyzaiaacIhacaGGWbWdaiabeg7aHnaaBaaaleaacaaIZaaabeaa k8qacaWG4bWdamaaDaaaleaacaaIXaaabaGaaGimaaaaaOWdbiaawI cacaGLPaaacaGGSaaabaWdamaalaaabaGaam4samaaDaaaleaacaaI YaaabaGaamivaiaadgeaaaaakeaacaWGrbWaaSbaaSqaaiaadsfaca WGbbaabeaaaaGccaaIYaGaey4kaSIaaGPaV=qaciGGLbGaaiiEaiaa cchacaqGGaWdaiabeg7aHnaaBaaaleaacaaIXaaabeaak8qacaWG4b WdamaaDaaaleaacaaIXaaabaGaaGimaaaak8qadaqadaWdaeaapeGa aGimaiaac6cacaaI1aGaaGynaiaaiwdacaaI1aGaci4yaiaac+gaca GGZbGaeqOSdi2aaSbaaSqaaiaaigdaaeqaaOGaamiEa8aadaqhaaWc baGaaGymaaqaaiaaicdaaaGccqGHRaWkpeGaaGimaiaac6cacaaIWa GaaGyoaiaaiMdacaaI5aGaaGioaiGacohacaGGPbGaaiOBaiabek7a InaaBaaaleaacaaIXaaabeaakiaadIhapaWaa0baaSqaaiaaigdaae aacaaIWaaaaaGcpeGaayjkaiaawMcaaiabgUcaRaqaaiabgUcaRiaa ykW7ciGGLbGaaiiEaiaacchacaqGGaWdaiabeg7aHnaaBaaaleaaca aIYaaabeaak8qacaWG4bWdamaaDaaaleaacaaIXaaabaGaaGimaaaa k8qadaqadaWdaeaapeGaaGimaiaac6cacaaI0aGaaGynaiaaiodaca aI2aGaci4yaiaac+gacaGGZbGaeqOSdi2aaSbaaSqaaiaaikdaaeqa aOGaamiEa8aadaqhaaWcbaGaaGymaaqaaiaaicdaaaGccqGHRaWkpe GaaGimaiaac6cacaaIWaGaaGOnaiaaiAdacaaI1aGaaGioaiGacoha caGGPbGaaiOBaiabek7aInaaBaaaleaacaaIYaaabeaakiaadIhapa Waa0baaSqaaiaaigdaaeaacaaIWaaaaaGcpeGaayjkaiaawMcaaiab gUcaRiaad+eadaqadaqaaiGacwgacaGG4bGaaiiCa8aacqaHXoqyda WgaaWcbaGaaG4maaqabaGcpeGaamiEa8aadaqhaaWcbaGaaGymaaqa aiaaicdaaaaak8qacaGLOaGaayzkaaGaaiilaaqaa8aadaWcaaqaai aadUeadaqhaaWcbaGaaGOmaaqaaiaadAeacaWGbbaaaaGcbaGaamyu amaaBaaaleaacaWGgbGaamyqaaqabaaaaOGaaG4mamaabmaabaGaam iEamaaDaaaleaacaaIXaaabaGaaGimaaaakiabgkHiTiabes7aKnaa BaaaleaacaWGTbaabeaaaOGaayjkaiaawMcaaiabgUcaRiaaykW7pe GaciyzaiaacIhacaGGWbGaaeiia8aacqaHXoqydaWgaaWcbaGaaGym aaqabaGcpeGaamiEa8aadaqhaaWcbaGaaGymaaqaaiaaicdaaaGcpe WaaeWaa8aabaWdbiaaicdacaGGUaGaaGimaiaaicdacaaI0aGaaGOm aiGacogacaGGVbGaai4Caiabek7aInaaBaaaleaacaaIXaaabeaaki aadIhapaWaa0baaSqaaiaaigdaaeaacaaIWaaaaOGaey4kaSYdbiaa icdacaGGUaGaaGOnaiaaikdacaaIZaGaaGyoaiGacohacaGGPbGaai OBaiabek7aInaaBaaaleaacaaIXaaabeaakiaadIhapaWaa0baaSqa aiaaigdaaeaacaaIWaaaaaGcpeGaayjkaiaawMcaaiabgUcaRaqaai abgUcaRiaaysW7ciGGLbGaaiiEaiaacchacaqGGaWdaiabeg7aHnaa BaaaleaacaaIYaaabeaak8qacaWG4bWdamaaDaaaleaacaaIXaaaba GaaGimaaaak8qadaqadaWdaeaapeGaeyOeI0IaaGimaiaac6cacaaI WaGaaGymaiaaiodacaaI1aGaci4yaiaac+gacaGGZbGaamODamaaBa aaleaacaaIYaaabeaakiaadIhapaWaa0baaSqaaiaaigdaaeaacaaI WaaaaOGaey4kaSYdbiaaicdacaGGUaGaaGinaiaaiEdacaaI4aGaaG ioaiGacohacaGGPbGaaiOBaiabek7aInaaBaaaleaacaaIYaaabeaa kiaadIhapaWaa0baaSqaaiaaigdaaeaacaaIWaaaaaGcpeGaayjkai aawMcaaiabgUcaRiaad+eadaqadaqaaiGacwgacaGG4bGaaiiCa8aa cqaHXoqydaWgaaWcbaGaaG4maaqabaGcpeGaamiEa8aadaqhaaWcba GaaGymaaqaaiaaicdaaaaak8qacaGLOaGaayzkaaGaaiilaaqaa8aa cqaHXoqydaWgaaWcbaGaaGymaaqabaGccqGHijYUpeGaaGinaiaac6 cacaaIYaGaaGymaiaaikdacaaI0aGaaiilaiaaykW7cqaHYoGydaWg aaWcbaGaaGymaaqabaGcpaGaeyisIS7dbiaaikdacaGGUaGaaGOmai aaiwdacaaIWaGaaG4naiaacYcacaaMc8+daiabeg7aHnaaBaaaleaa caaIYaaabeaakiabgIKi7+qacaaI3aGaaiOlaiaaisdacaaI5aGaaG 4naiaaiAdacaGGSaGaaGPaVlabek7aInaaBaaaleaacaaIYaaabeaa k8aacqGHijYUpeGaaGOmaiaac6cacaaI3aGaaGOnaiaaiIdacaaI3a GaaiilaiaaykW7paGaeqySde2aaSbaaSqaaiaaiodaaeqaaOGaeyis IS7dbiaaigdacaaIWaGaaiOlaiaaiEdacaaIXaGaaG4maiaac6caaa aa@02C5@  (5.3)

Здесь члены, не содержащие убывающие экспоненты, соответствуют случаю приложения нагрузки на бесконечности, рассмотренному в работе [43].

Вблизи вершины трещины подстановка(4.28)–(4.34) в (5.1) дает:

  K 1 FD Q FD = 2 π x 1 1/2 +3.226 x 1 1/2 +2.174 x 1 3/2 +O x 1 5/2 K 1 TD Q TD =1.449+0.6814 x 1 +0.4941 x 1 2 +O x 1 3 K 2 TA Q TA = 2 π x 1 1/2 +1.196 x 1 1/2 +0.2988 x 1 3/2 +O x 1 5/2 K 2 FA Q FA =1.042+1.904 x 1 1.007 x 1 2 +O x 1 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaaceqaamaalaaabaGaam4samaaDaaaleaacaaIXa aabaGaamOraiaadseaaaaakeaacaWGrbWaaSbaaSqaaiaadAeacaWG ebaabeaaaaGccqGH9aqpdaGcaaqaamaalaaabaGaaGOmaaqaaiabec 8aWbaaaSqabaGcdaqadaqaaiabgkHiTiaadIhadaWgaaWcbaGaaGym aaqabaaakiaawIcacaGLPaaadaqhaaWcbaaabaGaeyOeI0IaaGymai aac+cacaaIYaaaaOGaey4kaSIaaG4maiaac6cacaaIYaGaaGOmaiaa iAdadaqadaqaaiabgkHiTiaadIhadaWgaaWcbaGaaGymaaqabaaaki aawIcacaGLPaaadaqhaaWcbaaabaGaaGymaiaac+cacaaIYaaaaOGa ey4kaSIaaGOmaiaac6cacaaIXaGaaG4naiaaisdadaqadaqaaiabgk HiTiaadIhadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqh aaWcbaaabaGaaG4maiaac+cacaaIYaaaaOGaey4kaSIaam4tamaabm aabaGaamiEamaaDaaaleaacaaIXaaabaGaaGynaiaac+cacaaIYaaa aaGccaGLOaGaayzkaaaabaWaaSaaaeaacaWGlbWaa0baaSqaaiaaig daaeaacaWGubGaamiraaaaaOqaaiaadgfadaWgaaWcbaGaamivaiaa dseaaeqaaaaakiabg2da9iabgkHiTiaaigdacaGGUaGaaGinaiaais dacaaI5aGaey4kaSIaaGimaiaac6cacaaI2aGaaGioaiaaigdacaaI 0aGaamiEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaaicdacaGGUa GaaGinaiaaiMdacaaI0aGaaGymaiaadIhadaqhaaWcbaGaaGymaaqa aiaaikdaaaGccqGHRaWkcaWGpbWaaeWaaeaacaWG4bWaa0baaSqaai aaigdaaeaacaaIZaaaaaGccaGLOaGaayzkaaGaaGPaVlaaykW7aeaa daWcaaqaaiaadUeadaqhaaWcbaGaaGOmaaqaaiaadsfacaWGbbaaaa GcbaGaamyuamaaBaaaleaacaWGubGaamyqaaqabaaaaOGaeyypa0Za aOaaaeaadaWcaaqaaiaaikdaaeaacqaHapaCaaaaleqaaOWaaeWaae aacqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaWaa0baaSqaaaqaaiabgkHiTiaaigdacaGGVaGaaGOmaaaakiabgU caRabaaaaaaaaapeGaaGymaiaac6cacaaIXaGaaGyoaiaaiAdapaWa aeWaaeaacqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOa GaayzkaaWaa0baaSqaaaqaaiaaigdacaGGVaGaaGOmaaaakiabgUca RiaaicdapeGaaiOlaiaaikdacaaI5aGaaGioaiaaiIdapaWaaeWaae aacqGHsislcaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaWaa0baaSqaaaqaaiaaiodacaGGVaGaaGOmaaaakiabgUcaRiaad+ eadaqadaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaiwdacaGGVaGa aGOmaaaaaOGaayjkaiaawMcaaiaaykW7caaMc8oabaWaaSaaaeaaca WGlbWaa0baaSqaaiaaikdaaeaacaWGgbGaamyqaaaaaOqaaiaadgfa daWgaaWcbaGaamOraiaadgeaaeqaaaaakiabg2da9iabgkHiTiaaig dacaGGUaGaaGimaiaaisdacaaIYaGaey4kaSIaaGymaiaac6cacaaI 5aGaaGimaiaaisdacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0 IaaGymaiaac6cacaaIWaGaaGimaiaaiEdacaWG4bWaa0baaSqaaiaa igdaaeaacaaIYaaaaOGaey4kaSIaam4tamaabmaabaGaamiEamaaDa aaleaacaaIXaaabaGaaG4maaaaaOGaayjkaiaawMcaaiaac6caaaaa @D7F8@            (5.4)

Для случая нагружения парой нормальных сил (FD) погрешность, даваемая асимптотикой (5.3), по сравнению с точным решением для x 1 0 =0.3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoacqGH9aqpcaaIWaGaaiOlaiaaioda aaa@3A04@  составляет 0.4% и уменьшается с ростом x 1 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoaaaa@36D5@ . Погрешность, даваемая асимптотикой (5.4), для x 1 0 =0.3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoacqGH9aqpcaaIWaGaaiOlaiaaioda aaa@3A04@  составляет 0.39% и уменьшается с уменьшением x 1 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoaaaa@36D5@ . Таким образом, существует область пересечения в районе x 1 0 =0.3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoacqGH9aqpcaaIWaGaaiOlaiaaioda aaa@3A04@ , где обе асимптотики дают погрешности менее 0.5%.

Аналогично для случая нагружения парой продольных сил (TA) погрешность, даваемая асимптотикой (5.3). по сравнению с точным решением для x 1 0 =0.3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoacqGH9aqpcaaIWaGaaiOlaiaaioda aaa@3A04@  составляет 0.54% и уменьшается с ростом x 1 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoaaaa@36D5@ . Погрешность, даваемая асимптотикой (5.4), для x 1 0 =0.3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoacqGH9aqpcaaIWaGaaiOlaiaaioda aaa@3A04@  составляет 0.81% и уменьшается с уменьшением x 1 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoaaaa@36D5@ . Таким образом, существует область пересечения в районе x 1 0 =0.3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoacqGH9aqpcaaIWaGaaiOlaiaaioda aaa@3A04@ , где обе асимптотики дают погрешности менее 0.9%.

Еще лучше работают асимптотические представления для случая нагружения парой нормальных сил, действующих в одном направлении (FA). Так погрешность, даваемая асимптотикой (5.3), с учетом лишь первого содержащего экспоненту члена по сравнению с точным решением для x 1 0 =0.2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoacqGH9aqpcaaIWaGaaiOlaiaaikda aaa@3A03@  составляет 0.08% и уменьшается с ростом x 1 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoaaaa@36D5@ . Погрешность, даваемая асимптотикой (5.4), для x 1 0 =0.2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoacqGH9aqpcaaIWaGaaiOlaiaaikda aaa@3A03@  составляет 0.14% и уменьшается с уменьшением x 1 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoaaaa@36D5@ . Таким образом, существует область пересечения в районе x 1 0 =0.2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoacqGH9aqpcaaIWaGaaiOlaiaaikda aaa@3A03@ , где обе асимптотики дают погрешности менее 0.15%.

Несколько хуже работают асимптотические представления для случая нагружения парой продольных сил, действующих в одном направлении (TD). Погрешность, даваемая асимптотикой (5.4), для x 1 0 =0.1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoacqGH9aqpcaaIWaGaaiOlaiaaigda aaa@3A02@  составляет 0.65%, а для x 1 0 =0.15 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoacqGH9aqpcaaIWaGaaiOlaiaaigda caaI1aaaaa@3AC1@ – уже 1.45%. Погрешность же, даваемая асимптотикой (5.3), составляет для этих расстояний уже 12 и 8%, соответственно. Приемлемые результаты она дает лишь до x 1 0 =0.4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoacqGH9aqpcaaIWaGaaiOlaiaaisda aaa@3A05@ , где значение относительной погрешности составляет 0.35%. Поэтому при расчетах необходимо в разложении (5.2)  x 1 0 =0.1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaabdaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaicdaaaaakiaawEa7caGLiWoacqGH9aqpcaaIWaGaaiOlaiaaigda aaa@3A02@  необходимо удержать минимум 11 членов.

Зависимости нормализованных значений КИН в зависимости от координаты x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaaa@32EF@  приложения пар сил представлены на рис. 4.

 

Рис. 4. Зависимости нормализованных значений КИН от действия пар сил, приложенных к берегам трещины в зависимости от координаты х1 точек их приложения. Сплошная линия – К1 от действия пары нормальных противоположно направленных сил; пунктирная линия – К2 от действия пары продольных противоположно направленных сил; штрих-пунктирная линия – К1 от действия пары продольных соноправленных сил; точечная линия – К2 от действия пары нормальных соноправленных сил.

 

Рис. 5. Зависимости нормализованных значений КИН от действия сил, приложенных на продолжении линии трещины в зависимости от координаты x1 точек их приложения. Сплошная линия K1– от действия продольной силы; пунктирная линия K2– от действия нормальной силы.

 

Рис. 6. Зависимости нормализованных значений К1 – (a) и К2 – (b) от действия сил, приложенных на внешней границе х2 = 1 и линии, параллельной границе и отстоящей от линии трещины х2 = 0.1 в зависимости от координаты х1 точек их приложения. Сплошные линии – от действия нормальной силы х2 = 1; пунктирные линии – от действия продольной силы х2 = 1; штрих-пунктирные линии – от действия нормальной силы х2 = 0.1; точечные линии – от действия продольной силы х2 = 0.1.

 

В работе [33] для случая нагружения парой нормальных сил (рассмотренный случай FD) была предложена аппроксимационная формула, в используемых обозначениях записываемая в виде (здесь использовано значение δ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH0oazaaa@32B0@  посчитанное в [43], в работе [33] было использовано значение 0.673):

  K 1 FD Q FD = 12 x 1 0 +δ + 2 π x 1 0 0.815 x 1 0 0.619 +0.429 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaaiaadUeadaqhaaWcbaGaaGymaaqaai aadAeacaWGebaaaaGcbaGaamyuamaaBaaaleaacaWGgbGaamiraaqa baaaaOGaeyypa0ZaaOaaaeaacaaIXaGaaGOmaaWcbeaakmaabmaaba GaeyOeI0IaamiEamaaDaaaleaacaaIXaaabaGaaGimaaaakiabgUca Riabes7aKbGaayjkaiaawMcaaiabgUcaRmaakaaabaWaaSaaaeaaca aIYaaabaGaeqiWda3aaeWaaeaacqGHsislcaWG4bWaa0baaSqaaiaa igdaaeaacaaIWaaaaaGccaGLOaGaayzkaaaaaaWcbeaakiabgkHiTm aabmaabaGaaGimaiaac6cacaaI4aGaaGymaiaaiwdadaqadaqaaiab gkHiTiaadIhadaqhaaWcbaGaaGymaaqaaiaaicdaaaaakiaawIcaca GLPaaadaahaaWcbeqaaiaaicdacaGGUaGaaGOnaiaaigdacaaI5aaa aOGaey4kaSIaaGimaiaac6cacaaI0aGaaGOmaiaaiMdaaiaawIcaca GLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@5F85@ .             (5.5)

Согласно проведенным расчетам ее погрешность не превышает 1% (в работе [33] ее погрешность оценивалась не более 1.1%).

5.2. Силы, приложенные на продолжении линии трещины. Значения КИН рассчитываются подстановкой в (3.8) выражения (4.25) для x 1 0.1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyyzIm RaaGimaiaac6cacaaIXaaaaa@36E6@  либо (4.28)–(4.33) θ=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH4oqCcqGH9aqpcaaIWaaaaa@3481@  для x 1 0.1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyizIm QaaGimaiaac6cacaaIXaaaaa@36D5@ . Поскольку точки приложения сил являются Пусть в пределах зоны a x 1 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqGHsislcaWGHbGaeyizImQaamiEamaaBaaale aacaaIXaaabeaakiabgsMiJkaaicdaaaa@38F0@  действуют когезионные силы σ 22 c x 1 , σ 12 c x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHdpWCdaqhaaWcbaGaaGOmaiaaikdaaeaaca WGJbaaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGL OaGaayzkaaGaaiilaiaaykW7caaMc8Uaeq4Wdm3aa0baaSqaaiaaig dacaaIYaaabaGaam4yaaaakmaabmaabaGaamiEamaaBaaaleaacaaI XaaabeaaaOGaayjkaiaawMcaaaaa@4472@ . Их вклад в КИН можно вычислить интегрированием выражений для асимптотики ближнего поля – с помощью первой и третьей формул (5.4) с весами σ 22 c x 1 , σ 12 c x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHdpWCdaqhaaWcbaGaaGOmaiaaikdaaeaaca WGJbaaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaGccaGL OaGaayzkaaGaaiilaiaaykW7caaMc8Uaeq4Wdm3aa0baaSqaaiaaig dacaaIYaaabaGaam4yaaaakmaabmaabaGaamiEamaaBaaaleaacaaI XaaabeaaaOGaayjkaiaawMcaaaaa@4472@  соответственно. При весьма малом a MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGHbaaaa@31F1@  достаточно лишь ведущих членов асимптотического разложения, определяемых КИН, в противном случае, можно удержать еще один или два члена асимптотического разложения (5.4).

6. Приложение: поле вблизи вершины трещины; несколько старших членов разложения. 6.1. Разложения производных смещений в окрестности вершины трещины с нецелыми степенями. Для бесконечного тела с трещиной x 1 ],0], x 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOGIW SaaiyxaiabgkHiTiabg6HiLkaacYcacaaIWaGaaiyxaiaacYcacaaM c8UaaGPaVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaaIWa aaaa@41F4@  решения, удовлетворяющие условиям отсутствия нормальных и касательных напряжений на берегах, выраженные через комплексные потенциалы Φ z ,Ψ z ,z= x 1 +i x 2 =r e iθ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHMoGrdaqadaqaaiaadQhaaiaawIcacaGLPa aacaGGSaGaaGPaVlabfI6aznaabmaabaGaamOEaaGaayjkaiaawMca aiaacYcacaaMc8UaaGPaVlaadQhacqGH9aqpcaWG4bWaaSbaaSqaai aaigdaaeqaaOGaey4kaSIaamyAaiaadIhadaWgaaWcbaGaaGOmaaqa baGccqGH9aqpcaWGYbGaamyzamaaCaaaleqabaGaamyAaiabeI7aXb aaaaa@4C8F@  [57], могут быть представлены в виде:

   Φ z = k A k1/2 z k1/2 = k A k1/2 r k1/2 e i k1/2 θ ,Ψ z = k B k1/2 z k1/2 = k B k1/2 r k1/2 e i k1/2 θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqqHMoGrdaqadaqaaiaadQhaaiaawIcacaGLPa aacqGH9aqpdaaeqbqaaiaadgeadaWgaaWcbaGaam4AaiabgkHiTiaa igdacaGGVaGaaGOmaaqabaGccaWG6bWaaWbaaSqabeaacaWGRbGaey OeI0IaaGymaiaac+cacaaIYaaaaOGaeyypa0ZaaabuaeaacaWGbbWa aSbaaSqaaiaadUgacqGHsislcaaIXaGaai4laiaaikdaaeqaaOGaam OCamaaCaaaleqabaGaam4AaiabgkHiTiaaigdacaGGVaGaaGOmaaaa kiaadwgadaahaaWcbeqaaiaadMgadaqadaqaaiaadUgacqGHsislca aIXaGaai4laiaaikdaaiaawIcacaGLPaaacqaH4oqCaaaabaGaam4A aaqab0GaeyyeIuoakiaacYcacaaMc8UaaGPaVlaaykW7cqqHOoqwda qadaqaaiaadQhaaiaawIcacaGLPaaacqGH9aqpdaaeqbqaaiaadkea daWgaaWcbaGaam4AaiabgkHiTiaaigdacaGGVaGaaGOmaaqabaGcca WG6bWaaWbaaSqabeaacaWGRbGaeyOeI0IaaGymaiaac+cacaaIYaaa aaqaaiaadUgaaeqaniabggHiLdGccqGH9aqpcaaMc8+aaabuaeaaca WGcbWaaSbaaSqaaiaadUgacqGHsislcaaIXaGaai4laiaaikdaaeqa aOGaamOCamaaCaaaleqabaGaam4AaiabgkHiTiaaigdacaGGVaGaaG OmaaaakiaadwgadaahaaWcbeqaaiaadMgadaqadaqaaiaadUgacqGH sislcaaIXaGaai4laiaaikdaaiaawIcacaGLPaaacqaH4oqCaaaaba Gaam4Aaaqab0GaeyyeIuoaaSqaaiaadUgaaeqaniabggHiLdaaaa@8BD4@ ,              (6.1)

где A k1/2 , B k1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGbbWaaSbaaSqaaiaadUgacqGHsislcaaIXa Gaai4laiaaikdaaeqaaOGaaiilaiaaykW7caWGcbWaaSbaaSqaaiaa dUgacqGHsislcaaIXaGaai4laiaaikdaaeqaaaaa@3D42@ – комплексные константы. Случай k=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGRbGaeyypa0JaaGimaaaa@33BB@  соответствует сингулярному полю напряжений, характеризуемому КИН, k<0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGRbGaeyipaWJaaGimaaaa@33B9@  – членам с более высоким порядком сингулярности, не рассматриваемым здесь.

Напряжения и производные смещения выражаются следующим образом [57]:

  σ 22 z i σ 12 z =Φ z + Φ z ¯ +z Φ' z ¯ + Ψ z ¯ u 1,1 z +i u 2,1 z = 1 2μ κΦ z Φ z ¯ z Φ' z ¯ Ψ z ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakqaabeqaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaa qabaGcdaqadaqaaiaadQhaaiaawIcacaGLPaaacqGHsislcaWGPbGa eq4Wdm3aaSbaaSqaaiaaigdacaaIYaaabeaakmaabmaabaGaamOEaa GaayjkaiaawMcaaiabg2da9iabfA6agnaabmaabaGaamOEaaGaayjk aiaawMcaaiabgUcaRmaanaaabaGaeuOPdy0aaeWaaeaacaWG6baaca GLOaGaayzkaaaaaiabgUcaRiaadQhadaqdaaqaaiabfA6agjaacEca daqadaqaaiaadQhaaiaawIcacaGLPaaaaaGaey4kaSYaa0aaaeaacq qHOoqwdaqadaqaaiaadQhaaiaawIcacaGLPaaaaaaabaGaamyDamaa BaaaleaacaaIXaGaaiilaiaaigdaaeqaaOWaaeWaaeaacaWG6baaca GLOaGaayzkaaGaey4kaSIaamyAaiaadwhadaWgaaWcbaGaaGOmaiaa cYcacaaIXaaabeaakmaabmaabaGaamOEaaGaayjkaiaawMcaaiabg2 da9maalaaabaGaaGymaaqaaiaaikdacqaH8oqBaaWaamWaaeaacqaH 6oWAcqqHMoGrdaqadaqaaiaadQhaaiaawIcacaGLPaaacqGHsislda qdaaqaaiabfA6agnaabmaabaGaamOEaaGaayjkaiaawMcaaaaacqGH sislcaWG6bWaa0aaaeaacqqHMoGrcaGGNaWaaeWaaeaacaWG6baaca GLOaGaayzkaaaaaiabgkHiTmaanaaabaGaeuiQdK1aaeWaaeaacaWG 6baacaGLOaGaayzkaaaaaaGaay5waiaaw2faaiaacYcaaaaa@7F68@                                  (6.2)

где κ=34ν MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH6oWAcqGH9aqpcaaIZaGaeyOeI0IaaGinai abe27aUbaa@37E3@  для плоской деформации; μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaH8oqBaaa@32C1@ – модуль сдвига. Для k=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGRbGaeyypa0JaaGymaiaacYcacaaIYaaaaa@3528@  решения, удовлетворяющие условиям

   σ 22 r,θ=0 = σ 22 (k1/2) r k1/2 , σ 12 r,θ=0 = σ 12 (k1/2) r k1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHdpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaO WaaeWaaeaacaWGYbGaaiilaiabeI7aXjabg2da9iaaicdaaiaawIca caGLPaaacqGH9aqpcqaHdpWCdaqhaaWcbaGaaGOmaiaaikdaaeaaca GGOaGaam4AaiabgkHiTiaaigdacaGGVaGaaGOmaiaacMcaaaGccaWG YbWaaWbaaSqabeaacaWGRbGaeyOeI0IaaGymaiaac+cacaaIYaaaaO GaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaGcda qadaqaaiaadkhacaGGSaGaeqiUdeNaeyypa0JaaGimaaGaayjkaiaa wMcaaiabg2da9iabeo8aZnaaDaaaleaacaaIXaGaaGOmaaqaaiaacI cacaWGRbGaeyOeI0IaaGymaiaac+cacaaIYaGaaiykaaaakiaadkha daahaaWcbeqaaiaadUgacqGHsislcaaIXaGaai4laiaaikdaaaaaaa@71D9@                 (6.3)

и отсутствия нормальных и касательных напряжений на берегах трещины

  σ 22 r,θ=±π i σ 12 r,θ=±π =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacqaHdpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaO WaaeWaaeaacaWGYbGaaiilaiabeI7aXjabg2da9iabgglaXkabec8a WbGaayjkaiaawMcaaiabgkHiTiaadMgacqaHdpWCdaWgaaWcbaGaaG ymaiaaikdaaeqaaOWaaeWaaeaacaWGYbGaaiilaiabeI7aXjabg2da 9iabgglaXkabec8aWbGaayjkaiaawMcaaiabg2da9iaaicdaaaa@4EB4@    (6.4)

после несложных алгебраических преобразований приводятся к виду (4.31) (4.32)

6.2. Коэффициенты при дробных степенях разложения решения по расстоянию от вершины трещины в вспомогательных задачах о трещине в полосе. Лаплас-образы нормальных и касательных напряжений, действующих на продолжении трещины, имеют вид (4.6), (4.5). Их асимптотическое разложение на бесконечности представляется в виде рядов:

q ^ 2 p M = 6 p /2 8 I 2 +3π 6 8 p 3/2 + 8 I 2 +3π 2 6 128 p 5/2 +O p 7/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaamaaHaaabaGaamyCaaGaayPadaWaaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaa baGaamytaaaacqGH9aqpqaaaaaaaaaWdbmaakaaapaqaa8qacaaI2a aaleqaaOGaamiCa8aadaahaaWcbeqaa8qacqGHsislcaGGVaGaaGOm aaaakiabgkHiTmaabmaabaGaaGioaiaadMeadaWgaaWcbaGaaGOmaa qabaGccqGHRaWkcaaIZaGaeqiWdahacaGLOaGaayzkaaWdamaalaaa baWdbmaakaaapaqaaiaaiAdaaSWdbeqaaaGcpaqaaiaaiIdaaaWdbi aadchapaWaaWbaaSqabeaapeGaeyOeI0IaaG4maiaac+cacaaIYaaa aOGaey4kaSYaaeWaaeaacaaI4aGaamysamaaBaaaleaacaaIYaaabe aakiabgUcaRiaaiodacqaHapaCaiaawIcacaGLPaaapaWaaWbaaSqa beaapeGaaGOmaaaak8aadaWcaaqaa8qadaGcaaWdaeaacaaI2aaal8 qabeaaaOWdaeaacaaIXaGaaGOmaiaaiIdaaaWdbiaadchapaWaaWba aSqabeaapeGaeyOeI0IaaGynaiaac+cacaaIYaaaaOWdaiabgUcaRi aad+eadaqadaqaa8qacaWGWbWdamaaCaaaleqabaWdbiabgkHiTiaa iEdacaGGVaGaaGOmaaaaaOWdaiaawIcacaGLPaaaaaa@64D2@ , (6.5)

q ^ 1 p T = 2 p 1/2 8 I 1 +π 2 8 p 3/2 + 8 I 1 +π 2 2 128 p 5/2 +O p 7/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaamaaHaaabaGaamyCaaGaayPadaWaaS baaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaa baGaamivaaaacqGH9aqpqaaaaaaaaaWdbmaakaaapaqaa8qacaaIYa aaleqaaOGaamiCa8aadaahaaWcbeqaa8qacqGHsislcaaIXaGaai4l aiaaikdaaaGccqGHsisldaqadaWdaeaapeGaaGioaiaadMeadaWgaa WcbaGaaGymaaqabaGccqGHRaWkcqaHapaCaiaawIcacaGLPaaadaWc aaqaamaakaaapaqaa8qacaaIYaaaleqaaaGcbaGaaGioaaaacaWGWb WdamaaCaaaleqabaWdbiabgkHiTiaaiodacaGGVaGaaGOmaaaakiab gUcaRmaabmaapaqaa8qacaaI4aGaamysamaaBaaaleaacaaIXaaabe aakiabgUcaRiabec8aWbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qa caaIYaaaaOWaaSaaaeaadaGcaaWdaeaapeGaaGOmaaWcbeaaaOqaai aaigdacaaIYaGaaGioaaaacaWGWbWdamaaCaaaleqabaWdbiabgkHi TiaaiwdacaGGVaGaaGOmaaaak8aacqGHRaWkcaWGpbWaaeWaaeaape GaamiCa8aadaahaaWcbeqaa8qacqGHsislcaaI3aGaai4laiaaikda aaaak8aacaGLOaGaayzkaaaaaa@63CD@ , (6.6)

где I 2 , I 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeadaWgaaWcbaGaaGOmaa qabaGccaGGSaGaamysamaaBaaaleaacaaIXaaabeaaaaa@354F@  – главные члены асимптотических разложений при p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGWbGaeyOKH4QaeyOhIukaaa@355E@  интегралов, входящих в функции H 2 + p , H 1 + p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGibWaa0baaSqaaiaaikdaaeaacqGHRaWkaa GcdaqadaqaaiaadchaaiaawIcacaGLPaaacaGGSaGaaGPaVlaadIea daqhaaWcbaGaaGymaaqaaiabgUcaRaaakmaabmaabaGaamiCaaGaay jkaiaawMcaaaaa@3D84@  (4.12), (4.9), которые находятся по формулам [35, 58]

  I 1 = 1 2π ln 1 2 tht sh2t2t sh 2 t t 2 dt 0.35685 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeadaWgaaWcbaGaaGymaa qabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaGaeqiWdahaamaa pehabaWdaiaacYgacaGGUbWaaeWaaeaadaWcaaqaaiaaigdaaeaaca aIYaaaaiGacshacaGGObGaamiDamaalaaabaGaci4CaiaacIgacaaI YaGaamiDaiabgkHiTiaaikdacaWG0baabaGaci4CaiaacIgadaahaa WcbeqaaiaaikdaaaGccaWG0bGaeyOeI0IaamiDamaaCaaaleqabaGa aGOmaaaaaaaakiaawIcacaGLPaaacaWGKbGaamiDaaWcpeqaaiabgk HiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aOGaeyisISRaaGimaiaa c6cacaaIZaGaaGynaiaaiAdacaaI4aGaaGynaaaa@5B17@ ,                                                     (6.7)

  I 2 = 1 2π ln 1 2 th 3 t sh2t+2t sh 2 t t 2 dt 0.84334 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMeadaWgaaWcbaGaaGOmaa qabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaGaeqiWdahaamaa pehabaWdaiaacYgacaGGUbWaaeWaaeaadaWcaaqaaiaaigdaaeaaca aIYaaaaiGacshacaGGObWaaWbaaSqabeaacaaIZaaaaOGaamiDamaa laaabaGaci4CaiaacIgacaaIYaGaamiDaiabgUcaRiaaikdacaWG0b aabaGaci4CaiaacIgadaahaaWcbeqaaiaaikdaaaGccaWG0bGaeyOe I0IaamiDamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaca WGKbGaamiDaaWcpeqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGH RiI8aOGaeyisISRaaGimaiaac6cacaaI4aGaaGinaiaaiodacaaIZa GaaGinaaaa@5BFC@ .                                                  (6.8)

При выводе (6.5), (6.6) использовано свойство симметрии подынтегральных выражений функции H 2 + p , H 1 + p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGibWaa0baaSqaaiaaikdaaeaacqGHRaWkaa GcdaqadaqaaiaadchaaiaawIcacaGLPaaacaGGSaGaaGPaVlaadIea daqhaaWcbaGaaGymaaqaaiabgUcaRaaakmaabmaabaGaamiCaaGaay jkaiaawMcaaaaa@3D84@  (4.12), (4.9), приводящее к равенству нулю следующего члена разложения интегралов, входящих в (4.12), (4.39).

Разложения оригиналов нормальных и касательных напряжений вблизи нуля находится применением обратного преобразования (4.2) к разложению образов (6.5), (6.6):

σ 22 x 1 ,0 M = 6 π x 1 1/2 3 2 2π 8 I 2 +3π x 1 1/2 + 8 I 2 +3π 2 16 6π x 1 3/2 +O x 5/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaaiabeo8aZnaaBaaaleaacaaIYaGaaG OmaaqabaGcdaqadaqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGG SaGaaGimaaGaayjkaiaawMcaaaqaaiaad2eaaaGaeyypa0deaaaaaa aaa8qadaGcaaqaamaalaaabaGaaGOnaaqaaiabec8aWbaaaSqabaGc caWG4bWaa0baaSqaaiaaigdaaeaacqGHsislcaaIXaGaai4laiaaik daaaGccqGHsisldaWcaaqaamaakaaabaGaaG4maaWcbeaaaOqaaiaa ikdadaGcaaqaaiaaikdacqaHapaCaSqabaaaaOWaaeWaa8aabaWdbi aaiIdacaWGjbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaG4maiab ec8aWbGaayjkaiaawMcaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaig dacaGGVaGaaGOmaaaakiabgUcaRmaalaaabaWaaeWaa8aabaWdbiaa iIdacaWGjbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaG4maiabec 8aWbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaGcbaGa aGymaiaaiAdadaGcaaqaaiaaiAdacqaHapaCaSqabaaaaOGaamiEam aaDaaaleaacaaIXaaabaGaaG4maiaac+cacaaIYaaaaOWdaiabgUca Riaad+eadaqadaqaa8qacaWG4bWdamaaCaaaleqabaWdbiaaiwdaca GGVaGaaGOmaaaaaOWdaiaawIcacaGLPaaaaaa@6CA4@ , (6.9)

  σ 12 x 1 ,0 T = 2 π x 1 1/2 8 I 1 +π 2 2π x 1 1/2 + 8 I 1 +π 2 48 2π x 1 3/2 +O x 5/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaaiabeo8aZnaaBaaaleaacaaIXaGaaG OmaaqabaGcdaqadaqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGG SaGaaGimaaGaayjkaiaawMcaaaqaaiaadsfaaaGaeyypa0deaaaaaa aaa8qadaGcaaqaamaalaaabaGaaGOmaaqaaiabec8aWbaaaSqabaGc caWG4bWaa0baaSqaaiaaigdaaeaacqGHsislcaaIXaGaai4laiaaik daaaGccqGHsisldaWcaaqaaiaaiIdacaWGjbWaaSbaaSqaaiaaigda aeqaaOGaey4kaSIaeqiWdahabaGaaGOmamaakaaabaGaaGOmaiabec 8aWbWcbeaaaaGccaWG4bWaa0baaSqaaiaaigdaaeaacaaIXaGaai4l aiaaikdaaaGccqGHRaWkdaWcaaqaamaabmaapaqaa8qacaaI4aGaam ysamaaBaaaleaacaaIXaaabeaakiabgUcaRiabec8aWbGaayjkaiaa wMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaGcbaGaaGinaiaaiIdada GcaaqaaiaaikdacqaHapaCaSqabaaaaOGaamiEamaaDaaaleaacaaI XaaabaGaaG4maiaac+cacaaIYaaaaOWdaiabgUcaRiaad+eadaqada qaa8qacaWG4bWdamaaCaaaleqabaWdbiaaiwdacaGGVaGaaGOmaaaa aOWdaiaawIcacaGLPaaaaaa@68A1@ .          (6.10)

Здесь главные члены разложения соответствуют, как и ожидалось, полю от КИН, вычисление коэффициентов при следующих членах разложений дает (4.33).

6.3. Регулярные члены разложения производных смещений в окрестности вершины трещины. Коэффициенты U 1 (0) , U 1,1 (0) , U 1,11 (0) , U 2 (0) , U 2,1 (0) , U 2,11 (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWGvbWaa0baaSqaaiaaigdaaeaacaGGOaGaaG imaiaacMcaaaGccaGGSaGaaGPaVlaaykW7caaMc8UaamyvamaaDaaa leaacaaIXaGaaiilaiaaigdaaeaacaGGOaGaaGimaiaacMcaaaGcca GGSaGaaGPaVlaaykW7caaMc8UaamyvamaaDaaaleaacaaIXaGaaiil aiaaigdacaaIXaaabaGaaiikaiaaicdacaGGPaaaaOGaaiilaiaayk W7caaMc8UaaGPaVlaadwfadaqhaaWcbaGaaGOmaaqaaiaacIcacaaI WaGaaiykaaaakiaacYcacaaMc8UaaGPaVlaaykW7caWGvbWaa0baaS qaaiaaikdacaGGSaGaaGymaaqaaiaacIcacaaIWaGaaiykaaaakiaa cYcacaaMc8UaaGPaVlaaykW7caaMc8UaamyvamaaDaaaleaacaaIYa GaaiilaiaaigdacaaIXaaabaGaaiikaiaaicdacaGGPaaaaaaa@6B7F@  находятся с учетом того, что нерегулярные члены не дают вклада в поле производных смещений на берегах трещины непосредственным использованием (4.22), (4.2) и свойства дифференцирования оригинала:

U 1 (0) M =6+ 1 2π 6 π 3/2 + is+1 sin 2 is+1 is+1 2 B 12 is+1, x 2 =0 h 2 + is+1 H 2 + is+1 ds 5.0196 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaaiaadwfadaqhaaWcbaGaaGymaaqaai aacIcacaaIWaGaaiykaaaaaOqaaiaad2eaaaGaeyypa0JaaGOnaiab gUcaRmaalaaabaGaaGymaaqaaiaaikdaqaaaaaaaaaWdbiabec8aWb aapaGaaGPaVpaalaaabaWaaOaaaeaacaaI2aaaleqaaaGcbaWdbiab ec8aW9aadaahaaWcbeqaaiaaiodacaGGVaGaaGOmaaaaaaGccaaMc8 UaaGPaVpaapehabaWaaSaaaeaacaWGPbGaam4CaiabgUcaRiaaigda aeaaciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGcdaqada qaaiaadMgacaWGZbGaey4kaSIaaGymaaGaayjkaiaawMcaaiabgkHi TmaabmaabaGaamyAaiaadohacqGHRaWkcaaIXaaacaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaaaakmaalaaabaGaamOqamaaBaaaleaa caaIXaGaaGOmaaqabaGcdaqadaqaaiaadMgacaWGZbGaey4kaSIaaG ymaiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGim aaGaayjkaiaawMcaaaqaaiaadIgadaqhaaWcbaGaaGOmaaqaaiabgU caRaaakmaabmaabaGaamyAaiaadohacqGHRaWkcaaIXaaacaGLOaGa ayzkaaGaamisamaaDaaaleaacaaIYaaabaGaey4kaScaaOWaaeWaae aacaWGPbGaam4CaiabgUcaRiaaigdaaiaawIcacaGLPaaaaaGaamiz aiaadohaaSqaaiabgkHiTiabg6HiLcqaaiabgUcaRiabg6HiLcqdcq GHRiI8aOGaeyisIS7dbiaaiwdacaGGUaGaaGimaiaaigdacaaI5aGa aGOnaaaa@83AB@ , (6.11)

U 1,1 (0) M = 1 2π 6 π 3/2 + is+1 2 sin 2 is+1 is+1 2 B 12 is+1, x 2 =0 h 2 + is+1 H 2 + is+1 ds 2.3606 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaaiaadwfadaqhaaWcbaGaaGymaiaacY cacaaIXaaabaGaaiikaiaaicdacaGGPaaaaaGcbaGaamytaaaacqGH 9aqpdaWcaaqaaiaaigdaaeaacaaIYaaeaaaaaaaaa8qacqaHapaCaa WdaiaaykW7daWcaaqaamaakaaabaGaaGOnaaWcbeaaaOqaa8qacqaH apaCpaWaaWbaaSqabeaacaaIZaGaai4laiaaikdaaaaaaOGaaGPaVl aaykW7daWdXbqaamaalaaabaWaaeWaaeaacaWGPbGaam4CaiabgUca RiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaaci GGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaa dMgacaWGZbGaey4kaSIaaGymaaGaayjkaiaawMcaaiabgkHiTmaabm aabaGaamyAaiaadohacqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaaaakmaalaaabaGaamOqamaaBaaaleaacaaIXa GaaGOmaaqabaGcdaqadaqaaiaadMgacaWGZbGaey4kaSIaaGymaiaa cYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGimaaGaay jkaiaawMcaaaqaaiaadIgadaqhaaWcbaGaaGOmaaqaaiabgUcaRaaa kmaabmaabaGaamyAaiaadohacqGHRaWkcaaIXaaacaGLOaGaayzkaa GaamisamaaDaaaleaacaaIYaaabaGaey4kaScaaOWaaeWaaeaacaWG PbGaam4CaiabgUcaRiaaigdaaiaawIcacaGLPaaaaaGaamizaiaado haaSqaaiabgkHiTiabg6HiLcqaaiabgUcaRiabg6HiLcqdcqGHRiI8 aOGaeyisIS7dbiabgkHiTiaaikdacaGGUaGaaG4maiaaiAdacaaIWa GaaGOnaaaa@86D9@ , (6.12)

U 1,11 (0) M = 1 2π 6 π 3/2 + is+1 3 sin 2 is+1 is+1 2 B 12 is+1, x 2 =0 h 2 + is+1 H 2 + is+1 ds 3.423 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaaiaadwfadaqhaaWcbaGaaGymaiaacY cacaaIXaGaaGymaaqaaiaacIcacaaIWaGaaiykaaaaaOqaaiaad2ea aaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaabaaaaaaaaapeGaeq iWdahaa8aacaaMc8+aaSaaaeaadaGcaaqaaiaaiAdaaSqabaaakeaa peGaeqiWda3damaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaaaaki aaykW7daWdXbqaamaalaaabaWaaeWaaeaacaWGPbGaam4CaiabgUca RiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaakeaaci GGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaa dMgacaWGZbGaey4kaSIaaGymaaGaayjkaiaawMcaaiabgkHiTmaabm aabaGaamyAaiaadohacqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaaaakmaalaaabaGaamOqamaaBaaaleaacaaIXa GaaGOmaaqabaGcdaqadaqaaiaadMgacaWGZbGaey4kaSIaaGymaiaa cYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGimaaGaay jkaiaawMcaaaqaaiaadIgadaqhaaWcbaGaaGOmaaqaaiabgUcaRaaa kmaabmaabaGaamyAaiaadohacqGHRaWkcaaIXaaacaGLOaGaayzkaa GaamisamaaDaaaleaacaaIYaaabaGaey4kaScaaOWaaeWaaeaacaWG PbGaam4CaiabgUcaRiaaigdaaiaawIcacaGLPaaaaaGaamizaiaado haaSqaaiabgkHiTiabg6HiLcqaaiabgUcaRiabg6HiLcqdcqGHRiI8 aOWdbiabgkHiTiaaiodacaGGUaGaaGinaiaaikdacaaIZaaaaa@839A@ , (6.13)

U 2 (0) T =6 δ m + 1 2π 2 π + 1 sin 2 is+1 is+1 2 B 21 is+1, x 2 =0 h 1 + is+1 H 1 + is+1 ds 3.808 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaaiaadwfadaqhaaWcbaGaaGOmaaqaai aacIcacaaIWaGaaiykaaaaaOqaaiaadsfaaaGaeyypa0JaaGOnaiab es7aKnaaBaaaleaacaWGTbaabeaakiabgUcaRmaalaaabaGaaGymaa qaaiaaikdaqaaaaaaaaaWdbiabec8aWbaapaGaaGPaVpaalaaabaWa aOaaaeaacaaIYaaaleqaaaGcbaWaaOaaaeaapeGaeqiWdahal8aabe aaaaGccaaMc8UaaGPaVpaapehabaWaaSaaaeaacaaIXaaabaGaci4C aiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWGPb Gaam4CaiabgUcaRiaaigdaaiaawIcacaGLPaaacqGHsisldaqadaqa aiaadMgacaWGZbGaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaaaaGcdaWcaaqaaiaadkeadaWgaaWcbaGaaGOmaiaa igdaaeqaaOWaaeWaaeaacaWGPbGaam4CaiabgUcaRiaaigdacaGGSa GaamiEamaaBaaaleaacaaIYaaabeaakiabg2da9iaaicdaaiaawIca caGLPaaaaeaacaWGObWaa0baaSqaaiaaigdaaeaacqGHRaWkaaGcda qadaqaaiaadMgacaWGZbGaey4kaSIaaGymaaGaayjkaiaawMcaaiaa dIeadaqhaaWcbaGaaGymaaqaaiabgUcaRaaakmaabmaabaGaamyAai aadohacqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaiaadsgacaWGZbaa leaacqGHsislcqGHEisPaeaacqGHRaWkcqGHEisPa0Gaey4kIipaki abgIKi7+qacaaIZaGaaiOlaiaaiIdacaaIWaGaaGioaaaa@80B8@ , (6.14)

U 2,1 (0) T =6+ 1 2π 2 π + is+1 sin 2 is+1 is+1 2 B 21 is+1, x 2 =0 h 1 + is+1 H 1 + is+1 ds3.808 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaaiaadwfadaqhaaWcbaGaaGOmaiaacY cacaaIXaaabaGaaiikaiaaicdacaGGPaaaaaGcbaGaamivaaaacqGH 9aqpcqGHsislcaaI2aGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaa baaaaaaaaapeGaeqiWdahaa8aacaaMc8+aaSaaaeaadaGcaaqaaiaa ikdaaSqabaaakeaadaGcaaqaa8qacqaHapaCaSWdaeqaaaaakiaayk W7caaMc8+aa8qCaeaadaWcaaqaaiaadMgacaWGZbGaey4kaSIaaGym aaqaaiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakmaabm aabaGaamyAaiaadohacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaeyOe I0YaaeWaaeaacaWGPbGaam4CaiabgUcaRiaaigdaaiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaacaWGcbWaaSbaaSqa aiaaikdacaaIXaaabeaakmaabmaabaGaamyAaiaadohacqGHRaWkca aIXaGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaaI WaaacaGLOaGaayzkaaaabaGaamiAamaaDaaaleaacaaIXaaabaGaey 4kaScaaOWaaeWaaeaacaWGPbGaam4CaiabgUcaRiaaigdaaiaawIca caGLPaaacaWGibWaa0baaSqaaiaaigdaaeaacqGHRaWkaaGcdaqada qaaiaadMgacaWGZbGaey4kaSIaaGymaaGaayjkaiaawMcaaaaacaWG KbGaam4CaiabgIKi7+qacaaIZaGaaiOlaiaaiIdacaaIWaGaaGioaa WcpaqaaiabgkHiTiabg6HiLcqaaiabgUcaRiabg6HiLcqdcqGHRiI8 aaaa@8310@ , (6.15)

U 2,11 (0) T = 1 2π 2 π + is+1 2 sin 2 is+1 is+1 2 B 21 is+1, x 2 =0 h 1 + is+1 H 1 + is+1 ds4.0268 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWcaaqaaiaadwfadaqhaaWcbaGaaGOmaiaacY cacaaIXaGaaGymaaqaaiaacIcacaaIWaGaaiykaaaaaOqaaiaadsfa aaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaabaaaaaaaaapeGaeq iWdahaa8aacaaMc8+aaSaaaeaadaGcaaqaaiaaikdaaSqabaaakeaa daGcaaqaa8qacqaHapaCaSWdaeqaaaaakiaaykW7caaMc8+aa8qCae aadaWcaaqaamaabmaabaGaamyAaiaadohacqGHRaWkcaaIXaaacaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGcbaGaci4CaiaacMgaca GGUbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWGPbGaam4Caiab gUcaRiaaigdaaiaawIcacaGLPaaacqGHsisldaqadaqaaiaadMgaca WGZbGaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aaaaaaGcdaWcaaqaaiaadkeadaWgaaWcbaGaaGOmaiaaigdaaeqaaO WaaeWaaeaacaWGPbGaam4CaiabgUcaRiaaigdacaGGSaGaamiEamaa BaaaleaacaaIYaaabeaakiabg2da9iaaicdaaiaawIcacaGLPaaaae aacaWGObWaa0baaSqaaiaaigdaaeaacqGHRaWkaaGcdaqadaqaaiaa dMgacaWGZbGaey4kaSIaaGymaaGaayjkaiaawMcaaiaadIeadaqhaa WcbaGaaGymaaqaaiabgUcaRaaakmaabmaabaGaamyAaiaadohacqGH RaWkcaaIXaaacaGLOaGaayzkaaaaaiaadsgacaWGZbGaeyisIS7dbi aaisdacaGGUaGaaGimaiaaikdacaaI2aGaaGioaaWcpaqaaiabgkHi Tiabg6HiLcqaaiabgUcaRiabg6HiLcqdcqGHRiI8aaaa@8473@ . (6.16)

Остальные величины в (4.30)  x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaaaa@32EF@  ), уравнений равновесия (а также производных от них по координатам), в которых напряжения и деформации выражены через комбинации производных смещений.

7. Обсуждения и выводы. В настоящей работе рассмотрена двумерная задача теории упругости об изотропной полосе с центральной полубесконечной трещиной. Нагрузка в виде сосредоточенной силы предполагается приложенной в произвольной точке: на одном из берегов трещины, на внешней границе полосы либо к внутренней точке полосы. Решение для произвольной нагрузки, таким образом, в силу линейности задачи может быть получено суперпозицией. С использованием инвариантных взаимных интегралов (например, ­ 4­–­46]) и решения для полосы, нагруженной изгибающими моментами и продольными силами [ , 52], приложенными на бесконечности, получены выражения для коэффициентов интенсивности напряжений (КИН) для рассматриваемой задачи. В общем случае выражения для КИН представлены в виде двойных интегралов, посчитанных численно. Рассмотрены случаи сил, приложенных к берегам трещины, границам полосы и внутренним точкам полосы.

Получены асимптотические выражения для случаев приложения сил вдали от вершины трещины в виде рядов по убывающим экспонентам, сходящимся тем быстрее, чем дальше точка приложения силы от вершины трещины. Коэффициенты рядов получены в виде однократных интегралов от алгебраических функций, посчитанных численно. Также получены асимптотические выражения для КИН в случае сил, приложенных к берегам трещины вблизи ее вершины, в виде рядов по полуцелым и целым степеням расстояния до вершины.

Показаны совпадения полученных решений с известными решениями для частных случаев: нагрузки в виде пары нормальных сил, приложенных к берегам трещины и сил, приложенных вдали от вершины трещины.

Рассмотрена связь полученных решений с моделью когезионной трещины.

Отметим, что “нефизичность” некоторых полученных результатов, таких как различие значений КИН при стремлении к нулю расстояния между точкой приложения силы и вершиной трещины в зависимости от направления, по которому эти точки сближаются, объясняется асимптотическим характером самого сингулярного решения для поля напряжений и смещений вблизи вершины. В действительности, безусловно, бесконечных напряжений и деформаций существовать не может: при приближении к вершине и росте напряжений наступит момент, когда начнут влиять нелинейность, неупругость, дискретность структуры либо какие другие факторы. Однако все эти процессы будут управляться локальным полем, которое вполне можно определить из упругого решения, в частности представленного в работе.

Работа выполнена при финансовой поддержке госзадания (№ госрегистрации 124012500441-6).

×

作者简介

K. Ustinov

A.Yu. Ishlinsky Institute for problem in Mechanics RAS

编辑信件的主要联系方式.
Email: ustinov@ipmnet.ru
俄罗斯联邦, Moscow

参考

  1. Zweben C., Smith W.S., Wardle M.W. Test methods for fiber tensile strength, composite flexural modulus, and properties of fabric-reinforced laminates // Composite Materials: Testing and Design (Fifth Conference), ASTM International 1979. https://doi.org/10.1520/STP36912S
  2. Hofinger I., Oechsner M., Bahr H.-A., Swain M.V. Modified four-point bend specimen for determining the interface fracture energy for thin, brittle layers // Int. J. Fracture. 1998. V. 92. P. 213–220.
  3. Thery P.-Y., Poulain M., Dupeux M., Braccini M. Spallation of two thermal barrier coating systems: experimental study of adhesion and energetic approach to lifetime during cyclic oxidation // J. Mater. Sci. 2009. V. 44. P. 1726–1733. https://doi.org/10.1007/s10853-008-3108-x
  4. Hutchinson R.G., Hutchinson J.W. Lifetime assessment for thermal barrier coatings: tests for measuring mixed mode delamination toughness // J. Am. Ceram. Soc. 2011. V. 94. P. S85–S95. https://doi.org/10.1111/j.1551-2916.2011.04499.x
  5. Vaunois J.-R., Poulain M., Kanouté P., Chaboche J.-L. Development of bending tests for near shear mode interfacial toughness measurement of EB-PVD thermal barrier coatings // Eng. Frac. Mech. 2017. V. 171. P. 110–134. https://doi.org/10.1016/j.engfracmech.2016.11.009
  6. Monetto I., Massabò R. An analytical solution for the inverted four-point bending test in orthotropic specimens // Eng. Fract. Mech. 2020. https://doi.org/10.1016/j.engfracmech
  7. Altenbach H., Altenbach J., Kissing W. Mechanics of composite structural members. Berlin Heidelberg, New York: Springer-Verlag, 2004. https://doi.org/10.1007/978-3-662-08589-9
  8. Banks-Sills L. Interface fracture and delaminations in composite materials, springer briefs in applied sciences and technology. Springer, International Publishing, Cham., 2018. https://doi.org/10.1007/978-3-319-60327-8
  9. Goldstein R.V., Perelmuter M.N. An interface crack with bonds between the surfaces // Mech. Solids. 2001. V. 36. № 1. P. 77–92.
  10. Glagolev V.V., Markin A.A. Influence of the model of the behavior of a thin adhesion layer on the value of the j-integral // Mech. Solids. 2022. V. 57. № 2. P. 278–285. https://doi.org/10.3103/S0025654422020169
  11. Glagolev V.V., Markin A.A. Limit states of adhesive layers under combined loading // Mech. Solids. 2023. V. 58. № 6. P. 1960–1966. https://doi.org/10.3103/S0025654423600204
  12. Aleksandrov V.M., Mkhitaryan S.M. Contact problems for bodies with thin coatings and interlayers. M.: Nauka, 1983. 487 p.
  13. Suo Z., Hutchinson J.W. Interface crack between two elastic layers // Int. J. Fract. 1990. V. 43. P. 1–18. https://doi.org/10.1007/BF00018123
  14. Hutchinson J.W., Suo Z. Mixed mode cracking in layered materials // Adv. Appl. Mech. Ed. J.W. Hutchinson, T.Y. Wu. 1992. V. 29. P. 63–191. https://doi.org/10.1016/S0065-2156(08)70164-9
  15. Massabò R., Brandinelli L., Cox B.N. Mode i weight functions for an orthotropic double cantilever beam // Int. J. Eng. Sci. 2003. V. 41. № 13–14. P. 1497–1518. https://doi.org/10.1016/S0020-7225(03)00029-6
  16. Li S., Wang J., Thouless M.D. The effects of shear on delamination in layered materials // J. Mech. Phys. Solids. 2004. V. 52. № 1. P. 193–214. https://doi.org/10.1016/S0022-5096(03)00070-X
  17. Andrews M.G., Massabò R. The effects of shear and near tip deformations on energy release rate and mode mixity of edge-cracked orthotropic layers // Eng. Fract. Mech. 2007. V. 74. № 17. P. 2700–2720. https://doi.org/10.1016/j.engfracmech.2007.01.013
  18. Kurguzov V.D. Modeling of delamination of thin films under compression // Computational continuum mechanics. 2014. V. 7. № 1. P. 91–99 (In Russian).
  19. Ustinov K.B. On influence of substrate compliance on delamination and buckling of coatings // Eng. Failure Anal. 2015. V. 47. № 14. P. 338–344. https://doi.org/10.1016/j.engfailanal.2013.09.022
  20. Begley M.R., Hutchinson J.W. The mechanics and reliability of films, multilayers and coatings. Cambridge University Press, 2017. https://doi.org/10.1017/9781316443606
  21. Vatulyan A.O., Morozov K.L. Investigation of delamination from an elastic base using a model with two coefficients of subgrade reaction // Mech. Solids. 2020. № 2. P. 207–217. https://doi.org/10.3103/S002565442002017X
  22. Vatulyan A.O., Morozov K.L. Study of the process of delamination of a non-uniform coating // Appl. Mech. Tech. Phys. 2021. V. 62. № 6 (370). P. 138–145 (In Russian).
  23. Obreimoff J.W. The splitting strength of mica // Proc. R. Soc. A Math. Phys. Eng. Sci. 1930. V. 127. P. 290–297.
  24. Gilman J.J. Fracture / Ed. B.L. Averbach et al. NY: John Wiley and Sons, Inc., 1959. P. 193–221.
  25. Suo Z. Delamination specimens for orthotropic materials // J. Appl. Mech. 1990. V. 57. № 3. P. 627–634. https://doi.org/10.1115/1.2897068
  26. Grekov M.A., Morozov N.F. Some modern methods in mechanics of cracks. In V. Adamyan et al. (Eds.), Operator theory: advances and applications. Modern analysis and applications. P. 127–142. Basel: Birkhäuser, 2009. https://doi.org/10.1007/978-3-7643-9921-4_8
  27. Kipling E.J., Mostovoy S., Patrick R.L. Materials research standards 4. 1964. № 3. P. 129–134.
  28. Kanninen M.F. An augmented double cantilever beam model for studying crack propagation and arrest // Int. J. Fract. 1973. V. 9. P. 83–92. https://doi.org/10.1007/BF00035958
  29. Gross B., Srawley J.E. Stress intensity factors by boundary collocation for single-edge notch specimens subjected to splitting forces, NASA TN D-3295. 1966.
  30. Popov G.Ya. Bending of a semi-infinite slab lying on a linearly deformable base // PMM. 1961. V. 2. P. 342–355 (In Russsian).
  31. Entov V., Salganik R., On beam approximation in crack theory // Izv. AN SSSR. Mehanika. 1965. V. 5. P. 95–102 (In Russian).
  32. Fichter W.B. The stress intensity factor for the double cantilever beam // Int. J. Fract. 1983. V. 22. № 2. P.133–143. https://doi.org/10.1007/BF00942719
  33. Foote R.M.L., Buchwald T. An exact solution for the stress intensity factor for a double cantilever beam // Int. J. Fract. 1985. V. 29. № 3. P. 125–134. https://doi.org/10.1007/BF00034313
  34. Zlatin A.N., Khrapkov A.A. A Semi-infinite crack parallel to the boundary of the elastic half-plane // Sov. Phys. Dokl. 1986. V. 31. P. 1009–1010.
  35. Khrapkov A. Winer-Hopf method in mixed elasticity theory problems. B.E. Vedeneev VNIIG Publishing House, 2001.
  36. Salganik R.L, Ustinov K.B Deformation problem for an elastically fixed plate modeling a coating partially delaminated from the substrate (plane strain) // Mech. Solids. 2012. V. 47. № 4. P. 415–425. https://doi.org/10.3103/S0025654412040061
  37. Georgiadis H.G., Papadopoulos G.A. Elastostatics of the orthotropic double-cantilever-beam fracture specimen // Z. Angew. Math. Phys. 1990. V. 41. № 6. P. 889–899. https://doi.org/10.1007/BF00945841
  38. Ustinov K.B., Lisovenko D.S., Chentsov A.V. Orthotropic strip with a central semi-infinite crack under arbitrary normal loads applied far from the crack tip // Bull. Samara State Tech. University. Ser.: Phys. Math. Sci. 2019. V. 23. № 4. P. 657–670 (In Russian). https://doi.org/10.14498/vsgtu1736
  39. Ustinov K.B., Massabò R., Lisovenko D. Orthotropic strip with central semi-infinite crack under arbitrary loads applied far apart from the crack tip. Analytical solution // Eng. Failure Analysis 2020. V. 110. P. 104410 (In Russian). https://doi.org/10.1016/j.engfailanal.2020.104410
  40. Ustinov K.B. T-stress in an orthotropic strip with a central semi-infinite crack loaded far from the crack tip // Mech. Solids, accepted for publication.
  41. Ustinov K.B., Borisova N.L. Splitting of a strip consisting of two identical orthotropic half-strips with isotropy axes symmetrically inclined to the interface // Mech. Solids, accepted for publication.
  42. Ustinov K.B., Idrisov, D.M. On delamination of bi-layers composed by orthotropic materials: exact analytical solutions for some particular cases // ZAMM.Z. Angew. Math. Mech. 2021. V. 101. № 4. P. e202000239. https://doi.org/10.1002/zamm.202000239
  43. Ustinov K. On semi-infinite interface crack in bi-material elastic layer // Eur. J. Mech. A Solids. 2019. V. 75. P. 56–69. https://doi.org/10.1016/j.euromechsol.2019.01.013
  44. Chen F.H.K., Shield R.T. Conservation laws in elasticity of the J-integral type // J. appl. Math. Phys. (ZAMP). 1977. V. 28. № 1–22. https://doi.org/10.1007/BF01590704
  45. Cho Y.J., Beom H.G., Earmme, Y.Y. Application of a conservation integral to an interface crack interacting with singularities // Int. J. Fracture. 1994. V. 65. P. 63–73. https://doi.org/10.1007/BF00017143
  46. Sladek J., Sladek V. Evaluations of the t-stress for interface cracks by the boundary element method // Eng. Fract. Mech. 1997. V. 56. № 6. P. 813–825. https://doi.org/10.1016/S0013-7944(96)00131-2
  47. Eshelby J.D. The force on an elastic singularity // Proc. R. Soc. Lond. Ser. A. 1951. V. 244. P. 87–112. https://doi.org/10.1098/rsta.1951.0016
  48. Cherepanov G.P. The propagation of cracks in a continuous medium // J. Appl. Math. Mech. 1967. V. 31. № 3. P. 503–512.
  49. Rice J.R. A path independent integral and the approximate analysis of strain concentration by notches and cracks // J. Appl. Mech. 1968. V. 35. P. 379–386. https://doi.org/10.1115/1.3601206
  50. Irwin G.R. Analysis of stresses and strains near the end of a crack traversing a plate // J. Appl. Mech. 1957. V. 24. № 3. P. 361–364. https://doi.org/10.1115/1.4011547
  51. Cherepanov G.P. Mechanics of brittle fracture. McGraw Hill Higher Education. 935 p.
  52. Ustinov K.B., Monetto I., Massabò R. Analytical solutions for an isotropic strip with a central semi-infinite crack: T-stresses, displacements of boundaries, stress intensity factor due to a force acting at the crack. To be published 2024.
  53. Ustinov K., Massabò R. On elastic clamping boundary conditions in plate models describing detaching bilayers // Int. J. Sol. Struct. 2022. V. 248. 111600. https://doi.org/10.1016/j.ijsolstr.2022.111600
  54. Leonov M.Ya., Panasyuk V.V. Development of finest cracks in a solid // Prikl. Mekhanika. 1959. V. 5. № 4. P. 391–401.
  55. Barenblatt G.I. On the equilibrium cracks formed during the brittle fracture // PMM [Appl. Math. Mech.]. 1959. V. 23. № 3. P. 434–444; № 4. P. 706–721; № 5. P. 893–900.
  56. Dugdale D.S. Yielding of steel sheets containing slits // J. Mech. Phys. Solids, 1960. V. 8. № 2. P. 100–104. https://doi.org/10.1016/0022-5096(60)90013-2
  57. Muskhelishvili, N.I. Some basic problems of the mathematical theory of elasticity. P. Noordhoff Limited, Groningen-Holland, third ed., 1953. P. 471.
  58. Gakhov F.D. Boundary value problems. Pergamon Press, 1966.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Geometry and system of applied loads.

下载 (13KB)
3. Fig. 2. System of applied loads for auxiliary problems: loading by a pair of bending moments (a); loading by a pair of forces with compensating moments (b).

下载 (20KB)
4. Fig. 3. Contours in the calculation of invariant integrals.

下载 (19KB)
5. Fig. 4. Dependences of normalized values ​​of the SIF on the action of pairs of forces applied to the crack faces depending on the coordinate x1 of the points of their application. Solid line – K1 on the action of a pair of normal oppositely directed forces; dotted line – K2 on the action of a pair of longitudinal oppositely directed forces; dashed-dotted line – K1 on the action of a pair of longitudinal co-directed forces; dotted line – K2 on the action of a pair of normal co-directed forces.

下载 (9KB)
6. Fig. 5. Dependences of normalized values ​​of the SIF on the action of forces applied along the continuation of the crack line depending on the coordinates of the points of their application. Solid line – on the action of the longitudinal force; dotted line – on the action of the normal force.

下载 (6KB)
7. Fig. 6. Dependences of normalized values ​​of K1 – (a) and K2 – (b) on the action of forces applied at the outer boundary x2 = 1 and the line parallel to the boundary and spaced from the crack line x2 = 0.1 depending on the coordinate x1 of the points of their application. Solid lines – on the action of the normal force x2 = 1; dotted lines – on the action of the longitudinal force x2 = 1; dashed-dotted lines – on the action of the normal force x2 = 0.1; dotted lines – on the action of the longitudinal force x2 = 0.1.

下载 (16KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».