УЛК 532.516

ДИНАМИКА ВЯЗКОГО ГАЗА В ЗАКРЫТОЙ УЗКОЙ ТРУБЕ ПРИ ГАРМОНИЧЕСКИХ КОЛЕБАНИЯХ ПОРШНЯ

© 2023 г. П. П. Осипов^{а,*}, Р. Р. Насыров^{а,**}

^аФедеральный исследовательский центр "Казанский научный центр" РАН, Институт механики и машиностроения, Казань, Россия

*E-mail: petro300@rambler.ru

**E-mail: nasyrov.ravil@bk.ru

Поступила в редакцию 05.07.2023 г. После доработки 14.08.2023 г. Принята к публикации 01.09.2023 г.

В результате решения линеаризованных двумерных уравнений Навье—Стокса в цилиндрической системе координат получено периодическое решение задачи о динамике газа в закрытой трубе при колебаниях поршня по гармоническому закону. Представлены зависимости резонансных частот от диаметра трубы. Исследован вопрос о максимальной амплитуде продольной скорости колебаний вязкого политропного газа на первой резонансной частоте. Полученные зависимости сравнены с известными результатами для плоского резонатора. Показано, что максимальная продольная скорость примерно в два раза больше в плоском резонаторе, чем в трубе с диаметром, равным ширине плоского резонатора.

Ключевые слова: закрытая труба-резонатор, резонансная частота, колебания вязкого газа

DOI: 10.31857/S1024708423600458, **EDN:** CQWRSY

При исследовании колебаний газа в резонаторах зачастую используется предположение о плоском характере волн в исследуемой области. В работе [1] на основе полных уравнений Навье—Стокса проведено численное моделирование волн в плоском закрытом резонаторе, имеющем прямоугольную форму.

- В [2] на основе редуцированных уравнений Навье—Стокса получено аналитическое решение задачи колебаний газа в узкой плоской прямоугольной осциллирующей каверне. На основе полученного решения исследован вопрос о зависимости первой резонансной частоты от ширины канала, а также изучены акустические течения газа в каверне, создаваемые на резонансной частоте стоячей волной.
- В [3] представлено численное решение одномерной задачи распространения периодической ударной волны в резонаторе на основе подхода Лагранжа. Результаты расчетов показали хорошее согласование как с физическими экспериментами [4], так и с результатами численного моделирования динамики газа в двумерном резонаторе [5].
- В [6] получено аналитическое решение задачи колебаний динамики вязкого политропного газа в закрытом плоском резонаторе. На основе аналитического решения построена резонансная кривая давления. Установлено хорошее согласование полученных результатов на резонансных и субрезонансных частотах с результатами подхода Лагранжа [3].
- В [7] во втором приближении получено аналитическое решение задачи о колебаниях газа в плоском закрытом резонаторе с вибрирующей стенкой. Построены графики средних массовых скоростей, которые хорошо согласуются как с численным решением задачи с осциллирующей стенкой [1], так и с аналитическим решением колеблющегося канала [2].
- В [8, 9] численно изучены колебания воздуха в закрытом резонаторе. В ходе исследования использовались полные уравнения Навье—Стокса с уравнением сохранения энергии, теплопроводности и состояния.

Во всех вышеизложенных работах акустические волны рассматривались в закрытом плоском резонаторе, однако на практике резонаторы представляют собой трубу. Поэтому целью настоя-

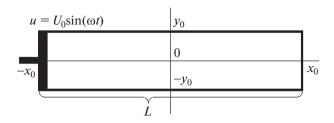


Рис. 1. Труба или плоский резонатор.

щей работы является получение аналитического решения задачи о колебаниях вязкого газа в трубе-резонаторе.

1. ЛИНЕАРИЗОВАННАЯ МОЛЕЛЬ КОЛЕБАНИЙ ГАЗА В ТРУБЕ-РЕЗОНАТОРЕ

Рассмотрим резонатор $-x_0 \le x \le x_0$, $0 \le y \le y_0$ с жесткими стенками (рис. 1). На левой границе возбуждается продольная скорость так, что

$$\frac{2}{y_0^2} \int_{0}^{y_0} yu(-x_0, y, t) dy = U_0 \sin \omega t.$$

Линеаризованная система, описывающая осесимметричные колебания вязкого сжимаемого газа, имеет вид [7]

$$\frac{1}{\rho_0 c_0^2} \frac{\partial p}{\partial t} + \frac{\partial u}{\partial x} + \frac{1}{y} \frac{\partial yv}{\partial y} = 0,$$

$$\rho_0 \frac{\partial u}{\partial t} + \frac{\partial p}{\partial x} = \mu \frac{1}{y} \frac{\partial}{\partial y} \left(y \frac{\partial u}{\partial y} \right),$$

$$\frac{\partial p}{\partial y} = 0.$$
(1.1)

Будем искать периодическое решение системы (1.1) с граничными условиями: на левой границе — поршень, на правой — отсутствие протекания, на стенках — условия прилипания.

$$\frac{2}{y_0^2} \int_0^{y_0} yu(-x_0, y, t)dy = U_0 e^{i\omega t};$$

$$u(x_0, y, t) = 0;$$

$$u(x, y_0, t) = 0, \quad v(x, y_0, t) = 0.$$
(1.2)

Заметим, что чем больше отношение x_0/y_0 , тем более точно линеаризованная система (1.1) описывает колебания вязкого сжимаемого газа в резонаторе. Периодическое решение задачи (1.1)—(1.2) ищем в виде стоячей волны

$$p = \tilde{p}(x, y)e^{i\omega t},$$

$$u = \tilde{u}(x, y)e^{i\omega t},$$

$$v = \tilde{v}(x, y)e^{i\omega t}.$$
(1.3)

Подстановка (1.3) в (1.1)—(1.2) дает

$$\frac{i\omega}{\rho_0 c_0^2} \tilde{p} + \frac{\partial \tilde{u}}{\partial x} + \frac{1}{y} \frac{\partial y \tilde{v}}{\partial y} = 0, \tag{1.4a}$$

$$\tilde{u} + \frac{1}{i\omega\rho_0} \frac{\partial \tilde{p}}{\partial x} = \frac{\mu}{i\omega\rho_0} \frac{1}{y} \frac{\partial}{\partial y} \left(y \frac{\partial \tilde{u}}{\partial y} \right). \tag{1.4b}$$

Граничные условия запишутся в виде

$$\begin{split} \frac{2}{y_0^2} \int_0^{y_0} y \tilde{u}(-x_0, y) dy &= U_0; \\ \tilde{u}(x_0, y) &= 0; \\ \tilde{u}(x, y_0) &= 0, \quad \tilde{v}(x, y_0) &= 0. \end{split}$$

1.1. Продольная скорость в произвольном сечении

Вводя амплитуду скорости $\tilde{u}_{x0}(x)=-\frac{1}{i\omega\rho_0}\frac{\partial\tilde{p}}{\partial x}$, запишем для нее уравнение

$$\tilde{u} - \frac{\mu}{i\omega\rho_0} \left(\frac{\partial^2 \tilde{u}}{\partial y^2} + \frac{1}{y} \frac{\partial \tilde{u}}{\partial y} \right) = \tilde{u}_{x0}(x).$$

Его общее решение есть $\tilde{u}=\tilde{u}_{x0}(x)+A(x)J_0(\beta^*y)$, где введена функция Бесселя нулевого рода, удовлетворяющая уравнению $z^2J_0''(z)+zJ_0'(z)+z^2J_0(z)=0$, где $z=\beta^*y$, $\beta=\frac{1+i}{\delta}$, $\delta=\sqrt{\frac{2\mu}{\omega\rho_0}}$, а звездочка означает комплексно-сопряженную величину. С учетом известного соотношения $J_0'(z)=-J_1(z)$ можно записать на оси

$$\frac{\partial \tilde{u}}{\partial y}\bigg|_{y=0} = A(x)\beta^*J_0(\beta^*y)\bigg|_{y=0} = -A(x)\beta^*J_1(\beta^*y)\bigg|_{y=0} = 0.$$

Из условий прилипания на стенке $y = y_0$:

$$\tilde{u}_{x0}(x) + A(x)J_0(\beta^*y_0) = 0,$$

получим $A(x) = -\frac{\tilde{u}_{x0}(x)}{J_0(\beta^* y_0)},$ откуда

$$\tilde{u} = \tilde{u}_{x0}(x) \left(1 - \frac{J_0(\beta^* y)}{J_0(\beta^* y_0)} \right).$$

Вводя осредненную по сечению трубы продольную скорость

$$U(x) = \frac{2}{v_0^2} \int_{0}^{v_0} y \tilde{u}(x, y) dy,$$

с учетом известного соотношения $\int\limits_0^z z J_0(z) dz = z J_1(z),$ запишем

$$\int_{0}^{y_{0}} y \frac{J_{0}(\beta * y)}{J_{0}(\beta * y_{0})} dy = \frac{1}{\beta *^{2} J_{0}(\beta * y_{0})} \int_{0}^{\beta * y_{0}} z J_{0}(z) dz = \frac{y_{0} J_{1}(\beta * y_{0})}{\beta * J_{0}(\beta * y_{0})},$$

откуда следует $U(x)=(1-f)\ \tilde{u}_{x0}(x)$, где $f=\frac{2}{\beta^*y_0}\frac{J_1(\beta^*y_0)}{J_0(\beta^*y_0)}$. Таким образом, запишем амплитуду колебаний продольной скорости

$$\tilde{u} = \frac{U(x)}{1 - f} \left(1 - \frac{J_0(\beta^* y)}{J_0(\beta^* y_0)} \right).$$

1.2. Касательное напряжение на стенке

Амплитуда касательного напряжения имеет вид:

$$\tilde{\sigma} = \mu \frac{\partial \tilde{u}}{\partial y}\Big|_{y_0} = \mu \frac{U(x)}{1 - f} \beta^* \frac{J_1(\beta^* y_0)}{J_0(\beta^* y_0)} = \mu \frac{U(x)}{1 - f} \frac{\beta^{*2} y_0}{2} f = -\mu \frac{U(x)}{1 - f} i \frac{y_0}{\delta^2} f.$$

То есть, касательное напряжение пропорционально средней по сечению x продольной скорости.

1.3. Усредненные по сечению уравнения неразрывности и импульса

Запишем осредненные по сечению уравнения (1.4)

$$\begin{split} \frac{i\omega}{\rho_0 c_0^2} \tilde{p} + \frac{\partial U}{\partial x} &= 0, \\ U(x) + \frac{1}{i\omega\rho_0} \frac{\partial \tilde{p}}{\partial x} &= \frac{2}{i\omega\rho_0} \frac{\tilde{\sigma}}{y_0} = -\frac{2}{i\omega\rho_0 y_0} \mu \frac{U(x)}{1 - f} i \frac{y_0}{\delta^2} f = -\frac{U(x)}{1 - f} f, \end{split}$$

окончательно:

$$\frac{i\omega}{\rho_0 c_0^2} \tilde{p} + \frac{\partial U}{\partial x} = 0, \tag{1.5a}$$

$$\frac{U(x)}{1-f} + \frac{1}{i\omega\rho_0} \frac{\partial \tilde{p}}{\partial x} = 0. \tag{1.5b}$$

1.4. Продольная скорость

Дифференцируя уравнение (1.5a) по x и исключая градиент давления с помощью (1.5b), получим уравнение для средней продольной скорости

$$\frac{\partial^2 U}{\partial x^2} - \alpha^2 U = 0,$$

где
$$\alpha = \frac{i\omega/c_0}{\sqrt{1-f}}$$
.

Запишем общее решение этого уравнения $U = A \cosh \alpha x + B \sinh \alpha x$. Граничные условия дают

$$U_{-x0} = A \operatorname{ch} \alpha x_0 - B \operatorname{sh} \alpha x_0 = U_0,$$

$$U_{x0} = A \operatorname{ch} \alpha x_0 + B \operatorname{sh} \alpha x_0 = 0,$$

откуда
$$A=\frac{U_0}{2\mathop{
m ch}\alpha x_0},\ B=-\frac{U_0}{2\mathop{
m sh}\alpha x_0}$$
 и $U(x)=\frac{U_0}{2}\biggl(\frac{\mathop{
m ch}\alpha x}{\mathop{
m ch}\alpha x_0}-\frac{\mathop{
m sh}\alpha x}{\mathop{
m sh}\alpha x_0}\biggr).$

Поэтому амплитуда продольной скорости равна

$$\frac{\tilde{u}}{U_0} = \frac{0.5}{1 - f} \left(\frac{\operatorname{ch} \alpha x}{\operatorname{ch} \alpha x_0} - \frac{\operatorname{sh} \alpha x}{\operatorname{sh} \alpha x_0} \right) \left(1 - \frac{J_0(\beta^* y)}{J_0(\beta^* y_0)} \right).$$

1.5. Давление

Из (1.5а) получаем

$$\tilde{p} = -\frac{\rho_0 c_0^2}{i\omega} \frac{\partial U}{\partial x} = -\frac{\rho_0 c_0 U_0}{2} \frac{1}{\sqrt{1 - f}} \left(\frac{\sinh \alpha x}{\cosh \alpha x_0} - \frac{\cosh \alpha x}{\sinh \alpha x_0} \right),$$

откуда

$$\frac{\tilde{p}}{\rho_0 c_0 U_0} = -\frac{0.5}{\sqrt{1 - f}} \left(\frac{\sinh \alpha x}{\cosh \alpha x_0} - \frac{\cosh \alpha x}{\sinh \alpha x_0} \right).$$

ИЗВЕСТИЯ РАН. МЕХАНИКА ЖИДКОСТИ И ГАЗА № 6 2023

1.6. Поперечная скорость

Уравнение для поперечной скорости найдем, умножив (1.4a) на *у* и проинтегрировав полученное уравнение по *у*. Выражая поперечную скорость, получим

$$\frac{\tilde{v}}{U_0} = -\frac{i\omega}{\rho_0 c_0^2} \frac{y}{2} \frac{\tilde{p}}{U_0} - \frac{1}{y} \frac{\partial}{\partial x} \int_0^y y \frac{\tilde{u}}{U_0} dy.$$

Вычисляя $\frac{\partial}{\partial x} \int\limits_0^y y \frac{\tilde{u}}{U_0} dy = \frac{0.5\alpha}{1-f} \left(\frac{\sinh\alpha x}{\cosh\alpha x_0} - \frac{\cosh\alpha x}{\sinh\alpha x_0} \right) \int\limits_0^y y \left(1 - \frac{J_0(\beta^*y)}{J_0(\beta^*y_0)} \right) dy$, с учетом известного соотношения

$$\int_{0}^{y} y \frac{J_{0}(\beta^{*}y)}{J_{0}(\beta^{*}y_{0})} dy = \frac{1}{\beta^{*2} J_{0}(\beta^{*}y_{0})} \int_{0}^{\beta^{*}y} z J_{0}(z) dz = \frac{y J_{1}(\beta^{*}y)}{\beta^{*} J_{0}(\beta^{*}y_{0})}$$

запишем, опуская громоздкие вычисления

$$\frac{\tilde{v}}{U_0} = y_0 \alpha \frac{0.25 f}{1 - f} \left(\frac{\sinh \alpha x}{\cosh \alpha x_0} - \frac{\cosh \alpha x}{\sinh \alpha x_0} \right) \left(\frac{J_1(\beta^* y)}{J_1(\beta^* y_0)} - \frac{y}{y_0} \right).$$

1.7. Резонатор-труба

Переходя к мнимым частям, получим формулы

$$\begin{split} \frac{u(x,y,t)}{U_0} &= \mathrm{Im}\Bigg(\frac{0.5}{1-f}\Bigg(\frac{\mathrm{ch}\,\alpha x}{\mathrm{ch}\,\alpha x_0} - \frac{\mathrm{sh}\,\alpha x}{\mathrm{sh}\,\alpha x_0}\Bigg)\Bigg(1 - \frac{J_0(\beta^*y)}{J_0(\beta^*y_0)}\Bigg)e^{i\omega t}\Bigg),\\ \frac{v(x,y,t)}{U_0} &= \mathrm{Im}\Bigg(\alpha y_0\frac{0.25f}{1-f}\bigg(\frac{\mathrm{sh}\,\alpha x}{\mathrm{ch}\,\alpha x_0} - \frac{\mathrm{ch}\,\alpha x}{\mathrm{sh}\,\alpha x_0}\bigg)\bigg(\frac{J_1(\beta^*y)}{J_1(\beta^*y_0)} - \frac{y}{y_0}\bigg)e^{i\omega t}\Bigg),\\ \frac{p(x,t) - p_0}{\rho_0 c_0 U_0} &= -\mathrm{Im}\bigg(\frac{0.5}{\sqrt{1-f}}\bigg(\frac{\mathrm{sh}\,\alpha x}{\mathrm{ch}\,\alpha x_0} - \frac{\mathrm{ch}\,\alpha x}{\mathrm{sh}\,\alpha x_0}\bigg)e^{i\omega t}\Bigg), \end{split}$$
 гле $\alpha = \frac{i\omega/c_0}{\sqrt{1-f}}, \ f = \frac{2}{\beta^*y_0}\frac{J_1(\beta^*y_0)}{J_0(\beta^*y_0)}, \ \beta = \frac{i+1}{\delta}, \ \delta = \sqrt{\frac{2\mu}{\omega \rho_0}}.$

1.8. Плоский резонатор

Для сравнения приведем аналогичные формулы, полученные в работе [3] для плоского резонатора

$$\begin{split} \frac{u(x,y,t)}{U_0} &= \mathrm{Im} \Biggl(\frac{0.5}{1-f} \Biggl(\frac{\mathrm{ch}\,\alpha x}{\mathrm{ch}\,\alpha x_0} - \frac{\mathrm{sh}\,\alpha x}{\mathrm{sh}\,\alpha x_0} \Biggr) \Biggl(1 - \frac{\mathrm{ch}\,\beta y}{\mathrm{ch}\,\beta y_0} \Biggr) e^{i\omega t} \Biggr), \\ \frac{v(x,y,t)}{U_0} &= \mathrm{Im} \Biggl(\alpha y_0 \frac{0.5f}{1-f} \Biggl(\frac{\mathrm{sh}\,\alpha x}{\mathrm{ch}\,\alpha x_0} - \frac{\mathrm{ch}\,\alpha x}{\mathrm{sh}\,\alpha x_0} \Biggr) \Biggl(\frac{\mathrm{sh}\,\beta y}{\mathrm{sh}\,\beta y_0} - \frac{y}{y_0} \Biggr) e^{i\omega t} \Biggr), \\ \frac{p(x,t) - p_0}{\rho_0 c_0 U_0} &= -\mathrm{Im} \Biggl(\frac{0.5}{\sqrt{1-f}} \Biggl(\frac{\mathrm{sh}\,\alpha x}{\mathrm{ch}\,\alpha x_0} - \frac{\mathrm{ch}\,\alpha x}{\mathrm{sh}\,\alpha x_0} \Biggr) e^{i\omega t} \Biggr), \end{split}$$
 где $\alpha = \frac{i\omega/c_0}{\sqrt{1-f}}, \ f = \frac{\mathrm{th}\,\beta y_0}{\beta y_0}, \ \beta = \frac{i+1}{\delta}, \ \delta = \sqrt{\frac{2\mu}{\omega \rho_0}}. \end{split}$

2. СРАВНЕНИЕ ПЛОСКОГО И ОСЕСИММЕТРИЧНОГО РЕШЕНИЯ

Далее будем сравнивать резонатор-трубу и плоский резонатор. При этом диаметр первого будет равен ширине плоского резонатора. Максимум амплитуды продольной скорости достигается

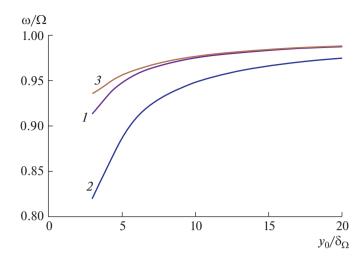


Рис. 2. Резонансная частота: 1 — плоский резонатор, 2 — труба-резонатор диаметром, равным ширине плоского резонатора, 3 — плоская каверна [2].

на оси y = 0 в центре резонатора x = 0. Поэтому будем искать максимум модуля продольной скорости газа по частоте ω , т.е. величины

$$\frac{|\tilde{u}(0,0)|}{U_0} = \frac{|0.5|}{1-f} \frac{1}{\cosh \alpha x_0} \left(1 - \frac{1}{J_0(\beta^* y_0)}\right).$$

При этом надо учесть, что величины δ , β^* , f, α зависят от частоты ω . В результате определяются оптимальные значения частоты ω и максимальная продольная скорость U_{\max} .

Для поиска максимума скорости будем задавать длину резонатора $L=2x_0$ и его относительный радиус y_0/δ_Ω . Толщина акустического пограничного слоя $\delta_\Omega=\sqrt{\frac{2\nu}{\Omega}}$ берется для фундаментальной частоты $\Omega=\pi c_0/L$. Для воздуха эта толщина может быть выражена в системе СГС через длину резонатора $\delta_\Omega=\sqrt{\frac{2\nu}{\pi c_0}}\sqrt{L}=0.00165\sqrt{L}$.

Для плоского резонатора будем искать максимум по частоте ω выражения [7]

$$\frac{\left|\tilde{u}(0,0)\right|}{U_0} = \left|\frac{0.5}{1-f}\frac{1}{\operatorname{ch}\alpha x_0}\left(1 - \frac{1}{\operatorname{ch}\beta y_0}\right)\right|.$$

На рис. 2 приведены графики зависимости резонансной частоты от поперечных размеров плоского [7], осесимметричного резонатора и плоской каверны [2]. Чем больше эти размеры, тем ближе резонансная частота к фундаментальной. Чем меньше поперечные размеры резонаторов, тем больше сказывается вязкость газа и тем более сдвигается резонанс от фундаментальной частоты в область низких частот. Для осесимметричного резонатора резонансные частоты меньше частот, чем для плоского.

В случае колеблющейся каверны, рассмотренной в работе [2], резонансная частота определяется из выражения $\frac{|\tilde{u}(0,0)|}{2U_0} = \left| \left(1 - \frac{1}{\operatorname{ch} \alpha x_0} \right) \left(1 - \frac{1}{\operatorname{ch} \beta y_0} \right) \right|$, и ее зависимость от ширины каверны представлена на рис. 2.

На рис. 3 представлены зависимости максимальной амплитуды продольной скорости газа $U_{\rm max}/U_0$ от поперечных размеров плоского и осесимметричного резонаторов на резонансной частоте

Графики рис. 3 показывают, что в диапазоне $5 \le y_0/\delta \le 20$ скорости $U_{\rm max}/U_0$ пропорциональны относительным поперечным размерам резонаторов y_0/δ_Ω . Эти значения приближенно могут быть оценены по следующим формулам: для трубы-резонатора $\frac{U_{\rm max}}{U_0} \approx 0.64 \frac{y_0}{\delta_\Omega}$; для плоского ре-

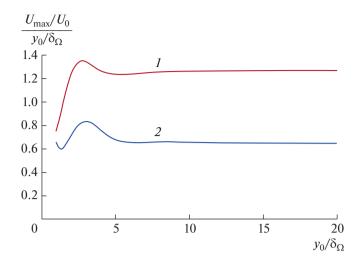


Рис. 3. Максимальная продольная скорость: 1 — плоский резонатор, 2 — труба-резонатор диаметром, равным ширине плоского резонатора.

зонатора $\frac{U_{\max}}{U_0} \approx 1.26 \frac{y_0}{\delta_{\Omega}}$. Максимальная амплитуда продольной скорости газа в плоском резонаторе шириной $2y_0$ примерно в два раза больше, чем в трубе диметром $2y_0$.

Приведенная формула позволяет оценить трудно измеряемую максимальную продольную скорость газа. Так, для трубы-резонатора длиной L=106 см с внутренним диаметром $2y_0=3.65$ см изучаемой в работе [10], при угловой частоте $\omega\approx 1009$ рад/с, амплитуде смещения поршня $X_0=0.035$ см, амплитуде скорости поршня $U_0=35.3$ см/с толщина акустического пограничного слоя равна $\delta_\Omega=0.00165\sqrt{L}\approx 0.0165$ см = 165 мкм, а максимальная продольная скорость газа равна $\frac{U_{\rm max}}{U_0}\approx 0.64\times \frac{1.8}{0.0165}\approx 69.8$.

В качестве другого примера рассмотрим плоский резонатор длиной L=0.8825 см, шириной $2y_0=0.0316$ см [1]. Толщина акустического пограничного слоя равна $\delta_\Omega=0.00165\times\sqrt{0.8825}\approx0.00155$ см = 15.5 мкм. Максимальная амплитуда продольной скорости газа в этом случае равна $\frac{U_{\rm max}}{U_0}\approx1.26\times\frac{0.0158}{0.00155}\approx12.84$.

На рис. 4 изображены резонансные кривые давления в осесимметричном резонаторе, посчитанные аналитически и численно, в диапазоне частот $\omega/\Omega \in [0.94, 1.06]$.

Графики полностью совпадают вне резонанса в областях [0.94, 0.98] и [1.02, 1.06], хорошо согласуются около резонанса ([0.98, 0.99] и [1.01, 1.02]). В резонансе $\omega/\Omega=1$ значения безразмерной амплитуды давления $\frac{p_{\max}-p_{\min}}{2p_0}$ максимальны и примерно равны 0.03.

На рис. 5 изображены графики максимальной амплитуды продольной скорости газа для частот, близких к фундаментальной частоте $\Omega = \pi c_0/L$. На графиках а и в представлены амплитудно-частотные характеристики для цилиндрического резонатора, на б и г — для плоского прямоугольного резонатора. Из графиков видно, что максимальные амплитуды продольной скорости газа для резонаторов различной ширины/радиуса значительно различаются вблизи фундаментальной частоты и сближаются по мере отклонения от нее. Максимальные амплитуды продольной скорости газа достигаются вблизи фундаментальной частоты попарно для осесимметричного и плоского случаев для резонаторов одинаковой ширины (или радиуса для осесимметричного случая). Графики имеют схожий колоколообразный характер. Из графиков видно, что максимальная скорость газа в плоском случае в 2 раза превышает скорость в осесимметричном случае вблизи фундаментальной частоты и совпадает вне фундаментальной резонансной области. На графиках пики сплошной линии находятся левее пиков пунктирной, значит резонансная частота для осесимметричного случая меньше резонансной частоты для плоского случая. Видно,

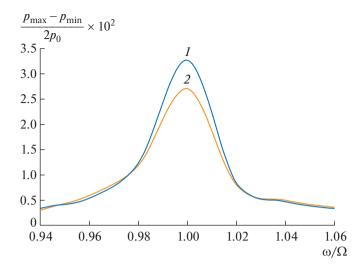


Рис. 4. Резонансная кривая давления в осесимметричном резонаторе. 1 — аналитическое решение, 2 — численное моделирование.

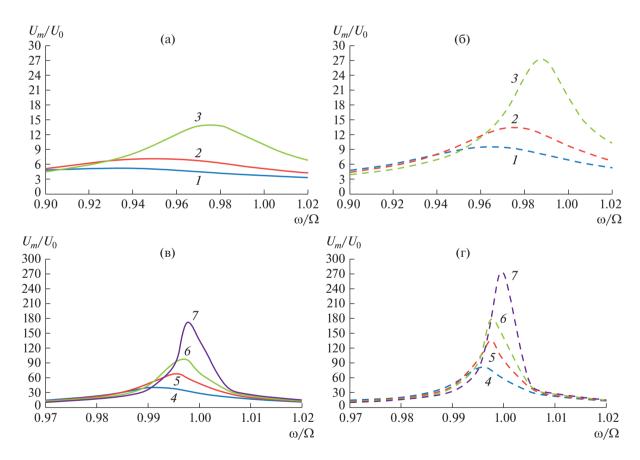


Рис. 5. Максимальные амплитуды продольной скорости газа вблизи фундаментальной частоты. а и в — цилиндрический резонатор, б и г — плоский двумерный резонатор. $I-y_0/\delta=7,\ 2-y_0/\delta=10,\ 3-y_0/\delta=20,\ 4-y_0/\delta=60,\ 5-y_0/\delta=100,\ 6-y_0/\delta=150,\ 7-y_0/\delta=300.$

что для узких резонаторов максимальная скорость газа достигается при частотах меньше фундаментальной. С ростом ширины (радиуса) резонатора максимальная скорость достигается при частотах, близких к фундаментальной частоте.

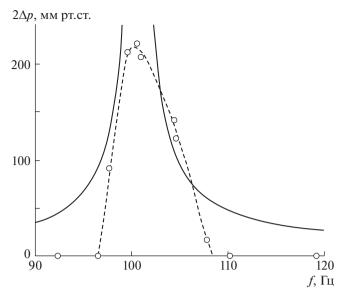


Рис. 6. Резонансная кривая максимального размаха давления на закрытом конце трубы-резонатора. Пунктиром — эксперимент [4], сплошной — аналитическое решение.

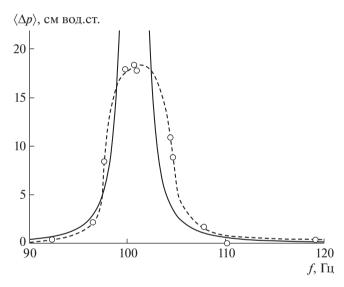


Рис. 7. Резонансная кривая среднего возмущения давления на закрытом конце трубы-резонатора. Пунктиром — эксперимент [4], сплошной — аналитическое решение.

В [4] изучены колебания газа в трубе-резонаторе длиной L=170.18 см и диаметром d=4.826 см. Толщина пограничного слоя равна $\delta_{\Omega}=\sqrt{\frac{2\nu}{\pi c_0}}\sqrt{L}=0.00165\times\sqrt{1.7018}=0.002145$ см, $d/\delta=0.04826/0.002145=22.5$, т.е. $d=22.5\delta$, что говорит о том, что эта труба достаточно узкая для применения предложенного аналитического решения.

На рис. 6 изображены резонансные кривые максимального размаха давления $\Delta p = p - p_0$ на закрытом конце трубы-резонатора, посчитанные аналитически и экспериментально. В работе [4] изучались ударные волны, которые возникают вблизи резонансной частоты, поэтому вне резонансных частот (где ударные волны не возникают) размах давления принимался равным нулю. Графики удовлетворительно согласуются на субрезонасных частотах.

На рис. 7 изображены резонансные кривые среднего возмущения давления на закрытом конце трубы-резонатора, посчитанные аналитически и экспериментально [4]. Графики хорошо согласуются вне резонанса и удовлетворительно согласуются на субрезонасных частотах.

ЗАКЛЮЧЕНИЕ

Получено приближенное решение задачи о колебаниях газа в закрытой трубе-резонаторе в замкнутом виде. На основе этого решения изучены поля скоростей и давления на резонансной и субрезонансных частотах для труб различного диаметра. Построены зависимости резонансных частот от диаметра трубы-резонатора. Установлено, что чем больше диаметр резонатора, тем ближе резонансная частота к фундаментальной. Чем меньше поперечные размеры резонаторов, тем больше сказывается вязкость газа и тем более сдвигается резонанс от фундаментальной частоты в область низких частот. Показано, что для осесимметричного резонатора резонансные частоты меньше частот, чем для плоского.

Найдены зависимости максимальной продольной скорости колебаний вязкого политропного газа от диаметра резонатора. Полученные зависимости сравнены с известными результатами для плоского резонатора. Показано, что средняя продольная скорость плоского резонатора примерно в два раза больше, чем скорость в трубе-резонаторе с диаметром, равным ширине плоского резонатора.

Получены резонансные кривые давления в осесимметричном резонаторе, посчитанные аналитически и численно вблизи резонанса. Установлены хорошее согласование графиков вблизи резонанса и удовлетворительное согласование амплитуды безразмерного давления в резонансе. Заметим, что, помимо практической пользы для прикладных оценок, аналитическое решение необходимо для учета вторичных течений.

ФИНАНСИРОВАНИЕ

Исследование выполнено за счет гранта Российского научного фонда № 20-11-20070, https://rscf.ru/project/20-11-20070/

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Aktas M.K.*, *Farouk B*. Numerical simulation of acoustic streaming generated by finite-amplitude resonant oscillations in an enclosure // Journal of the Acoustical Society of America. 2004. V. 116. № 5. P. 2822–2831. https://doi.org/10.1121/1.1795332
- 2. *Hamilton M.F., Ilinskii Yu.A., Zabolotskaya E.A.* Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width // Journal of the Acoustical Society of America. 2003. V. 113. № 1. P. 153–160. https://doi.org/10.1121/1.1528928
- 3. Gubaidullin D.A., Osipov P.P., Nasyrov R.R., Almakaev I.M. Numerical simulation of the shock wave in the closed resonator using 1D Lagrange's approach // Journal of Physics: Conference Series. 2018. V. 1058. № 012064. P. 1–4. https://doi.org/10.1088/1742-6596/1058/1/012064
- Saenger R.A., Hudson G.E. Periodic shock waves in resonating gas columns // Journal of the Acoustical Society of America. 1960. V. 32. P. 961–970. https://doi.org/10.1121/1.1908343
- 5. Chester W. Resonant oscillations in closed tubes // Journal of Fluid Mechanics. 1964. V. 18. P. 44–64. https://doi.org/10.1017/S0022112064000040
- 6. Osipov P.P., Nasyrov R.R. Resonance curve in rectangular closed channel // Lobachevskii Journal of Mathematics. 2020. V. 41. № 7. P. 1283–1288. https://doi.org/10.1134/S1995080220070355
- 7. *Губайдуллин Д.А., Осипов П.П., Насыров Р.Р.* Акустическое течение, индуцированное колебанием стенки плоского прямоугольного резонатора // Известия РАН. Механика жидкости и газа. 2022. № 1. С. 3—13. https://doi.org/10.31857/S0568528122010054
- 8. *Aganin A.A., Ilgamov M.A., Smirnova E.T.* Development of longitudinal gas oscillations in a closed tube // Journal of Sound and Vibration. 1996. V. 195. P. 359–374. https://doi.org/10.1006/jsvi.1996.0431
- 9. *Тукмаков А.Л*. Численное моделирование колебаний монодисперсной газовзвеси в нелинейном волновом поле // Прикладная механика и техническая физика. 2011. Т. 52. № 2. С. 36—43. https://doi.org/10.1134/S0021894411020040
- 10. *Губайдуллин Д.А., Зарипов Р.Г., Ткаченко Л.А.* Экспериментальное исследование коагуляции и осаждения аэрозоля в закрытой трубе в безударно-волновом режиме // Теплофизика высоких температур. 2012. Т. 50. № 4. С. 603—605. https://doi.org/10.1134/S0018151X12040098