An Innovative Approach to Magnetic Resonance Imaging of the Wrist

封面

如何引用文章

全文:

详细

Purpose: Determination of the diagnostic capabilities of a specialized metadevice designed to detect magnetic resonance signs of pathological changes in the hands (including early ones) in patients with rheumatoid arthritis.

Material and methods: The study considered a metadevice for imaging of hands with magnetic induction 1.5 T. 26 people were examined, 10 of whom were studied using a standard coil for examining the knee joint and 16 using a metadevice, magnetic resonance images T1-VI, T2-VI, PD FS-VI were obtained. The images were evaluated by radiologists on a 5-point scale Likert.

Results: The images acquired using the metadevice had acceptable and peer-reviewed absolute and relative signal-to-noise ratios with images obtained using a standard pattern at the same resolution deviation and measuring input power at an average of 18 times for 1.5 T. In terms of image quality criteria for the presence/absence of arthritis, the average score for the metadevice (4.33) is slightly higher than the score for the specialized coil (4.25). The lower score of the standard coil, including on the issue of artifacts, indicates a lower susceptibility of the metadevice to various factors that give artifacts on MRI.

Discussion: The analysis of the collected assessments of independent experts indicates that the diagnostic characteristics of magnetic resonance images of the hand obtained using wire-based metadevices (for 1.5 T) are of good and average levels, and are comparable, and also surpass the standard approaches in all criteria.

Conclusions/Conclusion: The assessment of the quality of the obtained images demonstrates the acceptable quality of imaging and reflects the possibility of their application in clinical practice, taking into account ongoing improvements and optimization of the entire set of pulse sequences for MRI of the hand.

作者简介

M. Lukin

V.A. Almazov National Medical Research Centre

Email: kristina-anp@mail.ru
St. Petersburg

E. Brui

National Research University IFMO, Faculty of Physics and Technology

Email: kristina-anp@mail.ru
St. Petersburg

A. Levchuk

V.A. Almazov National Medical Research Centre

Email: kristina-anp@mail.ru
St. Petersburg

A. Borshevetskaya

V.A. Almazov National Medical Research Centre

Email: kristina-anp@mail.ru
St. Petersburg

V. Fokin

V.A. Almazov National Medical Research Centre

Email: kristina-anp@mail.ru
St. Petersburg

V. Puchnin

National Research University IFMO, Faculty of Physics and Technology

Email: kristina-anp@mail.ru
St. Petersburg

A. Shchelokova

National Research University IFMO, Faculty of Physics and Technology

Email: kristina-anp@mail.ru
St. Petersburg

N. Anokhina

V.A. Almazov National Medical Research Centre

Email: kristina-anp@mail.ru
St. Petersburg

L. Galyautdinova

V.A. Almazov National Medical Research Centre

Email: kristina-anp@mail.ru
St. Petersburg

V. Egorova

V.A. Almazov National Medical Research Centre

Email: kristina-anp@mail.ru
St. Petersburg

K. Anpilogova

V.A. Almazov National Medical Research Centre

Email: kristina-anp@mail.ru
St. Petersburg

参考

  1. Ревматоидный артрит: Клинические рекомендации. М.: Министерство здравоохранения РФ, 2021.
  2. Макарова Д.В., Кушнир К.В. Стандартизированный протокол описания результатов конусно-лучевой компьютерной томографии кисти при ревматоидном артрите // Клиническая медицина. 2015. Т.7, № 4. С. 135-140. doi: 10.17691/stm2015.7.4.18.
  3. Østergaard M., Boesen M. Imaging in Rheumatoid Arthritis: the Role of Magnetic Resonance Imaging and Computed Tomography // La Radiologia Medica. 2019. No. 124. P. 1128–1141. https://doi.org/10.1007/s11547-019-01014-y.
  4. Webb A.G. Dielectric Materials in Magnetic Resonance // Concepts in Magnetic Resonance. Part A. 2011. V.38A. No. 4. P. 148–184.
  5. Shchelokova A., Ivanov V., Mikhailovskaya A., et al. Ceramic Resonators for Targeted Clinical Magnetic Resonance Imaging of the Breast // Nature Communications. 2020. V.11, No. 1. P. 1-7. https://doi.org/10.1038/s41467-020-17598-3.
  6. Rupprecht S., Sica C.T., Chen W., et al. Improvements of Transmit Efficiency and Receive Sensitivity with Ultrahigh Dielectric Constant (uHDC) Ceramics at 1.5 T and 3 T // Magnetic Resonance in Medicine. 2018. V.79, No. 5. P. 2842–2851. https://doi.org/10.1002/mrm.26943.
  7. Radu X., Dardenne X., Craeye C. Experimental Results and Discussion of Imaging with a Wire Medium for MRI Imaging Applications // IEEE Antennas and Propagation Society International Symposium. 2007.P. 5499-5502.
  8. Motovilova E., Sandeep S., Hashimoto M., et al. Watertunable Highly Sub-Wavelength Spiral Resonator for Magnetic Field Enhancement of MRI Coils at 1.5 T // IEEE Access. 2019. No. 7. P. 90304–90315.
  9. Schmidt R., Slobozhanyuk A., Belov P., et al. Flexible and Compact Hybrid Metasurfaces for Enhanced Ultra High Field in Vivo Magnetic Resonance Imaging // Scientific Reports. 2017. V.7, No. 1. P. 1-7. https://doi.org/10.1038/s41598-017-01932-9.
  10. Zivkovic I., Teeuwisse W., Slobozhanyuk A., et al. High Permittivity Ceramics Improve the Transmit Feld and Receive Efficiency of a Commercial Extremity Coil at 1.5 Tesla // Journal of Magnetic Resonance. 2019. No. 299. P. 59-65. https://doi.org/10.1016/j.jmr.2018.12.013.
  11. Shchelokova A.V., Slobozhanyukab A.P., Bruinc P., et al. Experimental Investigation of a Metasurface Resonator for in Vivo Imaging at 1.5 T // Journal of Magnetic Resonance. 2018. No. 286. P. 78-81.
  12. Brui E.A., Shchelokova A.V., Zubkov M., et al. Adjustable Subwavelength Metasurface‐Inspired Resonator for Magnetic Resonance Imaging // Physica Status Solidi (a). 2018. V.215, No. 5. P. 1700788.
  13. Shchelokova A.V., van den Berg C.A., Dobrykh D.A., et al. Volumetric Wireless Coil Based on Periodically Coupled Split-Loop Resonators for Clinical Wrist Imaging // Magnetic Resonance in Medicine. 2018. V.80, No. 4. P. 1726–1737.
  14. Nasonov A., Tikhonov P., Shchelokova A. et al. Assessing Safety and Transceive Performance of a Body Coil Combined with a Volumetric Wireless Coil for Wrist MRI at 3 T // Applied Magnetic Resonance. 2022. V.53, No. 12. P. 1597-1607. https://doi.org/10.1007/s00723-022-01502-x.
  15. Brui E., Mikhailovskaya A., Solomakha G., et al. Volumetric Wireless Coil for Wrist MRI at 1.5 T as a Practical Alternative to Tx/Rx Extremity Coil: a Comparative Study // Journal of Magnetic Resonance. 2022. No. 339. P. 107209.
  16. Brui E.A., Rapacchi S., Bendahan D., et al. Comparative Analysis of SINC-Shaped and SLR Pulses Performance for Contiguous Multi-Slice Fast Spin-Echo Imaging Using Metamaterial-Based MRI // Magnetic Resonance Materials in Physics, Biology and Medicine. 2021. V.34, No. 6. P. 929–938. https://doi.org/10.1007/s10334-021-00937-w.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».