🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Application of the Monte-Carlo Method for Calibration of a Gamma-ray Scintillation Spectrometer

Capa

Citar

Texto integral

Resumo

Purpose: To develop a method for calibration of a gamma-ray scintillation spectrometer using the Monte Carlo method.

Material and methods: The subject of the study was a gamma-ray spectrometer designed to measure the energy distribution (spectrum) and determine the activity of gamma-emitting radionuclides. Experimental studies were carried out with a set of exemplary measures of special-purpose activity with radionuclides 241Am, 152Eu, 60Co and 137Cs uniformly deposited on an ion exchange resin. Calibration of the spectrometer was carried out using the MCC 3D program (Monte Carlo Calculations 3D), modeling of the hardware spectrum was performed using the MCA program (MultiChannel Analyzer).

Results: The comparison of experimental and simulated spectra was carried out in the following energy intervals: the interval corresponding to the total peak of total absorption (PTA) for gamma energy lines 1173.2 keV and 1332.5 keV for 60Co and PTA for gamma energy line 661.7 keV for 137Cs; intervals corresponding to Compton scattering in the angle range (30–60)°, (60–90)° and (90–180)° (for the 60Co, the average gamma radiation energy of 1252.9 keV was considered); the interval corresponding to multiple scattering with an energy above 100 keV. It was found that the largest deviation of the simulated spectrum from the experimental one is 12 % for the interval corresponding to multiple scattering, which indicates the possibility of spectrum identity. This assumption was verified for each energy interval using the Pearson consensus criterion. A maximum value of χ2 equal to 6.6 was obtained for the energy interval corresponding to Compton scattering in the angle range (60–90)°, which indicates the acceptability of the hypothesis of the identity of the experimental and simulated spectra. Validation of the proposed method showed that the discrepancy between the calculated and passport activity of the sample was no more than 13 %, which indicates the possibility of using the method for calibration of the gamma spectrometer. The dependences of the efficiency of registration in the PTA on the density of the counting sample are calculated using simulated hardware spectra of single activity.

Conclusion: The proposed method makes it possible to calibrate the spectrometer to calculate the specific activity in samples at various densities and energies using spectrometric equipment equipped with inorganic scintillation crystals.

Sobre autores

D. Arefyeva

Scientific Research Institute of Industrial and Marine Medicine

Email: dasha86@inbox.ru
St. Petersburg

V. Firsanov

Scientific Research Institute of Industrial and Marine Medicine

Email: dasha86@inbox.ru
St. Petersburg

S. Yarmiychuk

Scientific Research Institute of Industrial and Marine Medicine

Email: dasha86@inbox.ru
St. Petersburg

A. Petushok

Scientific Research Institute of Industrial and Marine Medicine

Email: dasha86@inbox.ru
St. Petersburg

Bibliografia

  1. Monte Carlo N-Particle Transport Code. URL:https://ru.wikipedia.org/wiki/MCNP.
  2. Fluka Particle Transport Code. URL:https://ru.wikipedia.org/wiki/FLUKA.
  3. Penelope. A Code System for Monte Carlo Simulation of Electron and Photon Transport URL:http://www.mcnpvised.com/visedtraining/penelope/penelope0.pdf.
  4. Уроки и обучающие примеры по Geant4. Электронный ресурс:https://dev.asifmoda.com/geant4. (дата обращения: 24.09.2024)
  5. Cinelli G., Tositti L., Mostacci D., Bare J. Calibration with MCNP of NaI Detector for the Determination of Natural Radioactivity Levels in the Field // Journal of Environmental Radioactivity 2019. V.155. No.156. P. 31-37
  6. Mouhti I., Elanique A., Messous M.Y. Monte Carlo Modelling of a NaI(Tl) Scintillator Detectors Using MCNP Simulation Code // J. Mater. Environ. Sci. 2017. V.8. No.12. P. 4560-4565.
  7. Багаев К.А., Козловский С.С., Новиков И.Э. Программа для имитационного трехмерного моделирования систем детектирования и регистрации ионизирующих излучений на базе развитого графического интерфейса // АНРИ. 2007. №.4. С. 35-40.
  8. Спектрометры-радиометры гамма-, бета- и альфа-излучения МКГБ-01 «РАДЭК»: Руководство по эксплуатации. СПб.: Научно технический центр Радэк, 2012. 60 с.
  9. Детекторы ионизирующих излучений сцинтилляционные на основе кристаллов натрия йодистого, активированного таллием: ТУ 2651-001-26083472-2015. Усолье-Сибирское: Кристалл. 2015. 10 с.
  10. Капитонов М.И. Ядерная резонансная флуоресценция: Учебник. М.: МГУ им. М.В.Ломоносова., 2018. 128 с.
  11. Арефьева Д.В., Фирсанов В.Б., Куруч Д.Д. и др. Градуировка сцинтилляционного спектрометра гамма-излучений с применением метода математического моделирования // Радиационная гигиена. 2020. Т.13. № 4. С. 93-100. doi: 10.21514/1998-426X-2020-13-4-93-100. EDN ZAAYGU.
  12. Силантьев А.Н. Спектрометрический анализ радиоактивных проб внешней среды. Л.: Гидрометеорологическое издательство, 1969. 185 с.
  13. Малышева Т.А. Численные методы и компьютерное моделирование. Лабораторный практикум по аппроксимации функций: Учеб.-метод. пособие. СПб.: Университет ИТМО, 2016. 33 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».