The influence of CNN architecture, image size and quality to object detection model on histological specimens

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Improving convolutional neural network (CNN) quality for object search in histology scans is a long-standing problem that essentially involves selecting the best CNN architecture and creating a high-quality dataset. The efficacy of object detection algorithms is determined by numerous factors, including image quality, image size, and the search object. The primary aim of this study was to identify published studies on the impact of various image characteristics in a training sample and CNN architecture on the quality of a created model. Literature published in the last 5 years was reviewed, which addressed data pre-processing, methodology, requirements to images included in datasets, image preparation for CNN model development, and architecture selection. At the time of the study, there were no requirements to image size, and there was no data on the ratio of object size to image size for the best model performance. Moreover, the selection of neural network architecture is lacking in transparency and algorithmization. In the majority of cases, researchers recommend architectures that they have developed or used themselves, without explaining the reasons and selection criteria or comparing them to alternative options. All these factors significantly complicate the development of CNN models for medical image processing. This paper presents a brief overview of publications that address image preparation for datasets, as well as a potential approach to CNN architecture selection.

作者简介

Nina Fedosova

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: hard_sign@mail.ru
ORCID iD: 0000-0002-0829-9188
SPIN 代码: 5380-3194

MS

俄罗斯联邦, 10 Priorova str., 127299 Moscow

Gennadiy Berchenko

Priorov National Medical Research Center of Traumatology and Orthopedics

编辑信件的主要联系方式.
Email: berchenko@cito-bone.ru
ORCID iD: 0000-0002-7920-0552
SPIN 代码: 3367-2493

MD, Dr. Sci. (Medicine), professor

俄罗斯联邦, 10 Priorova str., 127299 Moscow

Olga Shugaeva

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: Olga.schugaeva2013@yandex.ru
ORCID iD: 0000-0002-0778-5109
俄罗斯联邦, 10 Priorova str., 127299 Moscow

Dmitriy Mashoshin

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: dima_mash@mail.ru
ORCID iD: 0009-0003-5442-5055
SPIN 代码: 5981-4084
俄罗斯联邦, 10 Priorova str., 127299 Moscow

Mikhail Kochan

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: mk_system@mail.ru
ORCID iD: 0009-0002-0699-1370
俄罗斯联邦, 10 Priorova str., 127299 Moscow

参考

  1. Hort M, Chen Z, Zhang JM, Harman M, Sarro F. Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey. ACM Journal on Responsible Computing. 2024;1(2):1–52. doi: 10.1145/3631326
  2. Kamiran F, Toon C. Data preprocessing techniques for classification without discrimination. Knowledge and Information Systems. 2012;33(1):1–33. doi: 10.1007/s10115-011-0463-8
  3. Li T, Chen K-S, Jin M. Analysis and simulation on imaging performance of backward and forward bistatic synthetic aperture radar. Remote Sensing. 2018;10(11):1676. doi: 10.3390/rs10111676
  4. Rius A, Cardellach E, Fabra F, et al. Feasibility of GNSS-R ice sheet altimetry in greenland using TDS-1. Remote Sensing. 2017;9(7):742. doi: 10.3390/rs9070742
  5. Yan J, Liu X, Wang X. Object detection in videos with tubelet proposal networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. Р. 727–735. doi: 10.1109/cvpr.2017.101
  6. Kendall A, Gal Y, Cipolla R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. Р. 7482–7491. doi: 10.1109/cvpr.2018.00781
  7. Chen W, Daneau S, Mannan F, Heide F. Steady-state nonline- of-sight imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. Р. 6790–6799. doi: 10.1109/cvpr.2019.00695
  8. Kaneyasu H, Etter SB, Sakai T, Sigrist M. Evolution of the filamentary 3-Kelvin phase in Pb-Ru-Sr2RuO4 Josephson junctions. Physical Review B. 2015;92(13):134515. doi: 10.1103/physrevb.92.134515
  9. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2015;28. doi: 10.1109/tpami.2016.2577031
  10. Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector. In: Computer Vision–ECCV. Part I. Springer; 2016. Р. 21–37. doi: 10.1007/978-3-319-46448-0_2
  11. Redmon J, Farhadi A. YOLOv3: An incremental improvement. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. doi: 10.1109/cvpr.2017.690
  12. Zhang S, Zhu X, Lei Z, et al. S3FD: Single shot scale-invariant face detector. In: IEEE international conference on computer vision. 2017. Р. 192–201. doi: 10.1109/iccv.2017.30
  13. Kumar A, Mital U, Gajera A, Varanasi S, Patra D. Empirical Study of the Impact of Image Quality, Object size, and Occlusion to Object Detection [Internet]. EasyChair Preprint 9786. 2023. Available from: https://easychair.org/publications/preprint/Wf1V
  14. Buyukkinaci M. Fruit images for object detection [Internet]. Available from: https://www.kaggle.com/datasets/mbkinaci/fruit-images-for-objectdetection
  15. Hao Y, Pei H, Lyu Y, et al. Understanding the Impact of Image Quality and Distance of Objects to Object Detection Performance. NYU Multimedia and Visual Computing Lab. 2022. doi: 10.48550/arXiv.2209.08237
  16. Seker E, Talburt JR, Greer ML. Preprocessing to Address Bias in Healthcare Data. Studies in Health Technology and Informatics. 2022;294:327–331. doi: 10.3233/shti220468
  17. Celis LE, Keswani V, Vishnoi N. Data preprocessing to mitigate bias: A maximum entropy-based approach. In: International Conference on Machine Learning, PMLR. 2020. Р. 1349–1359. doi: 10.1201/9781003055129-6

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2024

许可 URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».