Effect of ultra-low content of graphite nanoplatelets on tribological properties of composites based on ultra-high molecular weight polyethylene
- 作者: Zabolotnov A.S.1, Chelmodeev R.I.2, Lukina Y.S.2, Gostev S.S.1, Smolentsev D.V.2, Gavryushenko N.S.2
-
隶属关系:
- Semenov Federal Research Center of Chemical Physics
- Priorov Central Institute for Trauma and Orthopedics
- 期: 卷 31, 编号 4 (2024)
- 页面: 587-598
- 栏目: Original study articles
- URL: https://bakhtiniada.ru/0869-8678/article/view/310539
- DOI: https://doi.org/10.17816/vto635226
- ID: 310539
如何引用文章
详细
BACKGROUND: Improving ultra-high-molecular-weight polyethylene (UHMW PE) production techniques continues to be a top priority in medical engineering. This is due to the fact that liners are the weakest components of artificial joints, causing the majority of their damage or destruction. Filler reinforcement of UHMW PE improves the durability of UHMW PE products by decreasing the wear rate and coefficient of friction for various friction pairs.
AIM: To assess the effect of ultra-low graphite nanoplate content (0.006–0.307 mass%) on the tribological properties and wear resistance of UHMW PE-based composites.
MATERIALS AND METHODS: UHMW PE synthesized using various technologies was compared to commercial-grade UHMW PE produced by Ticona. The tribological properties were examined using the Nanovea Tribometer, and the wear resistance was assessed according to ISO 15527.
RESULTS: The study identified the range of graphite nanoplate concentrations with the lowest coefficient of friction. The coefficient of friction of UHMW PE without a filler corresponds to that of commercial-grade products GUR 1020 and GUR 1050 of the Chirulen brand, and composites made from it have a lower coefficient of friction. The optimal filler concentration was determined based on tribological and wear test findings.
CONCLUSION: Graphite nanoplates increase wear resistance when exposed to a water-sand suspension.
作者简介
Aleksandr Zabolotnov
Semenov Federal Research Center of Chemical Physics
Email: zabolotnov.ru@gmail.com
ORCID iD: 0000-0003-0695-9012
SPIN 代码: 6604-4708
Cand. Sci. (Engineering)
俄罗斯联邦, MoscowRostislav Chelmodeev
Priorov Central Institute for Trauma and Orthopedics
Email: cherosz@yandex.ru
ORCID iD: 0000-0002-0444-9070
SPIN 代码: 2080-5630
俄罗斯联邦, 10 Priorova str., 127299 Moscow
Yulia Lukina
Priorov Central Institute for Trauma and Orthopedics
Email: lukina_rctu@mail.ru
ORCID iD: 0000-0003-0121-1232
SPIN 代码: 2814-7745
Cand. Sci. (Engineering)
俄罗斯联邦, 10 Priorova str., 127299 MoscowSergey Gostev
Semenov Federal Research Center of Chemical Physics
Email: tmush2017@yandex.ru
ORCID iD: 0000-0002-3754-3872
SPIN 代码: 6943-7507
俄罗斯联邦, Moscow
Dmitriy Smolentsev
Priorov Central Institute for Trauma and Orthopedics
编辑信件的主要联系方式.
Email: SmolentsevDV@cito-priorov.ru
ORCID iD: 0000-0001-5386-1929
SPIN 代码: 3702-1955
俄罗斯联邦, 10 Priorova str., 127299 Moscow
Nikolay Gavryushenko
Priorov Central Institute for Trauma and Orthopedics
Email: testlabcito@mail.ru
ORCID iD: 0000-0002-7198-433X
SPIN 代码: 3335-6472
Dr. Sci. (Engineering), professor
俄罗斯联邦, 10 Priorova str., 127299 Moscow参考
- Szarek A, Postawa P, Stachowiak T, et al. The Analysis of Polyethylene Hip Joint Endoprostheses Strength Parameters Changes after Use inside the Human Body. Materials (Basel). 2021;14(22):7091. doi: 10.3390/ma14227091
- Singh JA, Yu S, Chen L, Cleveland JD. Rates of total joint replacement in the United States: future projections to 2020–2040 using the national inpatient sample. The Journal of rheumatology. 2019;46(9):1134–1140. doi: 10.3899/jrheum.170990
- Wu J, Peng Z. Investigation of the geometries and surface topographies of UHMWPE wear particles. Tribology International. 2013;66:208–218. doi: 10.1016/j.triboint.2013.05.005
- Pinchuk LS, Nikolaev VI, Tsvetkova EA, Goldade VA. Tribology and biophysics of artificial joints. In: Briscoe BJ, editor. Tribology and Interface Engineering — Series 50. Oxford: Elsevier; 2006. Р. 1–375.
- Niemczewska-Wójcik M, Piekoszewski W. The surface topography of a metallic femoral head and its influence on the wear mechanism of a polymeric acetabulum. Archiv Civ Mech Eng. 2017;17(2):307–317. doi: 10.1016/j.acme.2016.10.010
- Miura Y, Hasegawa M, Sudo A, Pezzotti G, Puppulin L. In-vivo degradation of middle-term highly cross-linked and remelted polyethylene cups: modification induced by creep, wear and oxidation. Journal of the Mechanical Behavior of Biomedical Materials. 2015;51:13–24.
- Choudhury D, Ranuša M, Fleming RA, et al. Mechanical wear and oxidative degradation analysis of retrieved ultra-high molecular weight polyethylene acetabular cups. Journal of the Mechanical Behavior of Biomedical Materials. 2018;79:314–323. doi: 10.1016/j.jmbbm.2018.01.003
- Nabrdalik M, Sobociński M. Modeling of stress and strain distribution in uhmwpe elements of knee and hip human joints. Acta Phys Pol A. 2020;138(2):224–227. doi: 10.12693/APhysPolA.138.224
- Patil NA, Njuguna J, Kandasubramanian B. UHMWPE for Biomedical Applications: Performance and Functionalization. European Polymer Journal. 2020;125:109529. doi: 10.1016/j.eurpolymj.2020
- Li S, Xu Y, Jing X, et al. Effect of carbonization temperature on mechanical properties and biocompatibility of biochar/ultra-high molecular weight polyethylene composites. Composites Part B: Engineering. 2020;196(18):108120.
- Xu JZ, Muratoglu OK, Oral E. Improved oxidation and wear resistance of ultrahigh molecular weight polyethylene using cross-linked powder reinforcement. J Biomed Mater Res B. 2019;107(3):716–723. doi: 10.1002/jbm.b.34165
- Ruggiero A, Gómez E, Merola M. Experimental comparison on tribological pairs UHMWPE/TIAL6V4 alloy, UHMWPE/AISI316L austenitic stainless and UHMWPE/AL2O3 ceramic, under dry and lubricated conditions. Tribology International. 2016;96:349–360.
- Hirakawa K, Bauer TW, Stulberg BN, Wilde AH, Secic M. Characterization and comparison of wear debris from failed total hip implants of different types. J BJS. 1996;78(8):1235–1243. doi: 10.2106/00004623-199608000-00014
- Massin P, Achour S. Wear products of total hip arthroplasty: The case of polyethylene. Morphologie. 2017;101(17):1–8. doi: 10.1016/j.morpho.2016.06.001
- Zeman J, Ranuša M, Vrbka M, et al. UHMWPE acetabular cup creep deformation during the run-in phase of THA’s life cycle. Journal of the mechanical behavior of biomedical materials. 2018;87:30–39. doi: 10.1016/j.jmbbm.2018.07.015
- Affatato S, Freccero N, Taddei P. The biomaterials challenge: A comparison of polyethylene wear using a hip joint simulator. J Mech Behav Biomed Mater. 2016;53:40–48. doi: 10.1016/j.jmbbm.2015.08.001
- Verma N, Zafar S, Pathak H. Investigations on thermal damage and surface roughness of laser beam machined nano-hydroxyapatite UHMWPE composites. Manufacturing Letters. 2020;25:81–87.
- Senra MR, Marques MFV, Souza DHS. Ultra-high molecular weight polyethylene bioactive composites with carbonated hydroxyapatite. Journal of the Mechanical Behavior of Biomedical Materials. 2020;110:103938. doi: 10.1016/j.jmbbm.2020.103938
- Baena JC, Wu J, Peng Z. Wear performance of UHMWPE and reinforced UHMWPE composites in arthroplasty applications: a review. Lubricants. 2015;3(2):413–436. doi: 10.3390/LUBRICANTS3020413
- Saravanan P, Melk L, Emami N. Mechanical and thermal properties of vitamin E-doped UHMWPE reinforced with hydroxyapatite. Tribology-Materials, Surfaces & Interfaces. 2021;15(3):193–200. doi: 10.1080/17515831.2020.1830252
- Aliyu IK, Azam MU, Lawal DU, Samad MA. Optimization of SiC Concentration and Process Parameters for a Wear-Resistant UHMWPE Nancocomposite. Arabian Journal for Science and Engineering. 2020;45:849–860. doi: 10.1007/s13369-019-04164-3
- Chang BP, Akil HM, Nasir RM, Nurdijati S. Mechanical and Antibacterial Properties of Treated and Untreated Zinc Oxide filled UHMWPE Composites. J Thermoplast Compos Mater. 2011;24(5):653–667. doi: 10.1177/0892705711399848
- Golchin A, Villain A, Emami N. Tribological behaviour of nanodiamond reinforced UHMWPE in water-lubricated contacts. Tribol Int. 2017;110:195–200. doi: 10.1016/j.triboint.2017.01.016
- Wood W, Li B, Zhong W-H. Influence of phase morphology on the sliding wear of polyethylene blends filled with carbon nanofibers. Polym Eng Sci. 2010;50:613–623. doi: 10.1002/pen.21549, 50:613-623
- Ruan SL, Gao P, Yang XG, Yu TX. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer. 2003;44(19):5643–5654. doi: 10.1016/s0032-3861(03)00628-1
- Xue Y, Wu W, Jacobs O, Schädel B. Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes. Polym Test. 2006;25:221–229. doi: 10.1016/j.polymertesting.2005.10.005
- Dayyoub T, Maksimkin AV, Kaloshkin S, et al. The structure and mechanical properties of the UHMWPE films modified by the mixture of graphene nanoplates with polyaniline. Polymers. 2018;11(1):23. doi: 10.3390/polym11010023
- Aliyu IK, Mohammed AS, Al-Qutub A. Tribological performance of ultra high molecular weight polyethylene nanocomposites reinforced with graphene nanoplatelets. Polym Compos. 2019;40:E1301–E1311.
- Zoo Y-S, An J-W, Lim D-P, Lim, D-S. Effect of Carbon Nanotube Addition on Tribological Behavior of UHMWPE. Tribology Letters. 2004;16(4):305–309. doi: 10.1023/b:tril.0000015206.21688.87
- Vega JF, Martínez-Salazar J, Trujillo M, et al. Rheology. Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules. 2009;42(13):4719–4727. doi: 10.1021/ma900645f
- Sui G, Zhong WH, Ren X, Wang XQ, Yang XP. Structure, mechanical properties and friction behavior of UHMWPE/HDPE/carbon nanofibers. Materials Chemistry and Physics. 2009;115(1):404–412. doi: 10.1016/j.matchemphys.2008.12.016
- Puértolas JA, Kurtz SM. Evaluation of carbon nanotubes and graphene as reinforcements for UHMWPE-based composites in arthroplastic applications: A review. Journal of the mechanical behavior of biomedical materials. 2014;39:129–145. doi: 10.1016/j.jmbbm.2014.06.013
- Somberg J, Gonçalves G, Sánchez MS, Emami N. Chemically expanded graphite-based ultra-high molecular weight polyethylene nanocomposites with enhanced mechanical properties. Materials & Design. 2022;224:111304. doi: 10.1016/j.matdes.2022.111304
- Brevnov PN, Kirsankina GR, Zabolotnov AS, et al. Synthesis and properties of nanocomposite materials based on ultra-high-molecular-weight polyethylene and graphite nanoplates. J Polym Sci. 2016;58(1):38–49. doi: 10.1134/S1811238216010021
- Zabolotnov AS, Gostev SS, Gudkov MV, Novokshonova LA, Chelmodeev RI. The influence of ultralow content of graphene on wear-resistant properties of composites based on ultra-high molecular weight polyethylene. Polym Sci Series A. 2023;65(3):296–301.
补充文件
