Вone marrow edema in the differential diagnosis of deases of the knee
- Authors: Torgashin A.N.1, Morozov A.K.1, Torgashina A.V.2, Magomedgadgiev R.M.1, Fedotov I.A.3, Rodionova S.S.1
-
Affiliations:
- Priorov National Medical Research Center of Traumatology and Orthopedics
- Nasonova Research Institute of Rheumatology
- Therapeutic and diagnostic center “Kutuzovsky”
- Issue: Vol 31, No 4 (2024)
- Pages: 647-663
- Section: Clinical case reports
- URL: https://bakhtiniada.ru/0869-8678/article/view/310545
- DOI: https://doi.org/10.17816/vto630870
- ID: 310545
Cite item
Abstract
INTRODUCTION: Bone marrow edema (a radiological term used in MR diagnosis) is characterized by low-intensity infiltration on T1-weighted sequences and high-intensity signal on T2-weighted short-tau inversion recovery (T2w-STIR) images.
CLINICAL CASE DESCRIPTION: The paper presents a case series in patients with knee pain, with subchondral bone lesions on MRI, characterized by bone marrow edema with no previous injury. The following diagnoses were made based on the type of bone edema and medical history: aseptic necrosis of the condyle, subchondral fracture, osteochondritis, secondary osteonecrosis, osteoarthritis, septic arthritis, and others. The paper describes the approach to differential diagnosis based on MRI findings.
CONCLUSION: An assessment of bone marrow edema found on MRI in patients with knee pain allows for timely diagnosis clarification and treatment initiation in some cases.
Full Text
##article.viewOnOriginalSite##About the authors
Alexander N. Torgashin
Priorov National Medical Research Center of Traumatology and Orthopedics
Author for correspondence.
Email: alexander.torgashin@gmail.com
ORCID iD: 0000-0002-2789-6172
SPIN-code: 8749-3890
MD, Cand. Sci. (Medicine)
Russian Federation, 10 Priorova str., 127229 MoscowAlexander K. Morozov
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: morozovak@cito-priorov.ru
ORCID iD: 0000-0002-9198-7917
SPIN-code: 4447-8306
MD, Dr. Sci. (Medicine);
Russian Federation, 10 Priorova str., 127229 MoscowAnna V. Torgashina
Nasonova Research Institute of Rheumatology
Email: anna.torgashina@gmail.com
ORCID iD: 0000-0001-8099-2107
SPIN-code: 8777-2790
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowRuslan M. Magomedgadgiev
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: arthro@list.ru
ORCID iD: 0009-0004-6068-3592
MD
Russian Federation, 10 Priorova str., 127229 MoscowIvan A. Fedotov
Therapeutic and diagnostic center “Kutuzovsky”
Email: fedotovmed@gmail.com
ORCID iD: 0000-0002-5796-1238
Russian Federation, Moscow
Svetlana S. Rodionova
Priorov National Medical Research Center of Traumatology and Orthopedics
Email: rod06@inbox.ru
ORCID iD: 0000-0002-2726-8758
SPIN-code: 3529-8052
MD, Dr. Sci. (Medicine), professor
Russian Federation, 10 Priorova str., 127229 MoscowReferences
- Azad H, Ahmed A, Zafar I, et al. X-ray and MRI Correlation of Bone Tumors Using Histopathology As Gold Standard. Cureus. 2022;14(7):e27262. doi: 10.7759/cureus.27262
- Hodgson RJ, O’Connor PJ, Grainger AJ. Tendon and ligament imaging. Br J Radiol. 2012;85(1016):1157–1172. doi: 10.1259/bjr/34786470
- Berger A. Magnetic resonance imaging. BMJ. 2002;324(7328):35. doi: 10.1136/bmj.324.7328.35
- Maraghelli D, Brandi ML, Cerinic MM, et al. Edema-like marrow signal intensity: a narrative review with a pictorial essay. Skeletal Radiol. 2021;50(4):645–663. doi: 10.1007/s00256-020-03632-4
- Torgashin AN, Rodionova SS, Morozov AK, et al. Bone marrow edema in the differential diagnosis of traumatic injuries of the knee joint. The Siberian Journal of Clinical and Experimental Medicine. 2023;38(3):223–230. (In Russ.).
- Smith R. Publishing information about patients. BMJ. 1995;311(7015):1240–1. doi: 10.1136/bmj.311.7015.1240
- Vollmann J, Helmchen H. Publishing information about patients. Obtaining consent to publication may be unethical in some cases. BMJ. 1996;312(7030):578. doi: 10.1136/bmj.312.7030.578b
- Mont MA, Marker DR, Zywiel MG, et al. Osteonecrosis of the knee and related conditions. J Am Acad Orthop Surg. 2011;19(8):482–494. doi: 10.5435/00124635-201108000-00004
- Grieser T. Die atraumatische und aseptische Osteonekrose großer Gelenke. Radiologe. 2019;59(7):647–662. doi: 10.1007/s00117-019-0560-3
- Viana SL, Machado BB, Mendlovitz PS. MRI of subchondral fractures: a review. Skeletal Radiol. 2014;43(11):1515–1527. doi: 10.1007/s00256-014-1946-y
- Ochi J, Nozaki T, Nimura A, et al. Subchondral insufficiency fracture of the knee: review of current concepts and radiological differential diagnoses. Japanese Journal of Radiology. 2022;40(5):443–457. doi: 10.1007/s11604-021-01224-3
- Gourlay ML, Renner JB, Spang JT, et al. Subchondral insufficiency fracture of the knee: a non-traumatic injury with prolonged recovery time. BMJ Case Rep. 2015;2015:209399. doi: 10.1136/bcr-2015-209399
- Murphey MD, Foreman KL, Klassen-Fischer MK, et al. From the radiologic pathology archives imaging of osteonecrosis: radiologic-pathologic correlation. RadioGraphics. 2014;34(4):1003–1028. doi: 10.1148/rg.344140019
- Zurlo JV. The double-line sign. Radiology. 1999;212(2):541–542 doi: 10.1148/radiology.212.2.r99au13541
- Oxtoby JW, Davies AM. MRI characteristic of chondroblastoma. Clin Radiol. 1996;51(1):22–6. doi: 10.1016/s0009-9260(96)80213-3
- Yamamoto T, Bullough PG. Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am. 2000;82(6):858–866. doi: 10.2106/00004623-200006000-00013
- Kattapuram TM, Kattapuram SV. Spontaneous osteonecrosis of the knee. Eur J Radiol. 2008;67:42–48.
- Holland JC, Brennan OD, Kennedy S, et al. Subchondral osteopenia and accelerated bone remodelling post-ovariectomy — a possible mechanism for subchondral microfractures in the aetiology of spontaneous osteonecrosis of the knee? J Anat. 2013;222(2):231–238. doi: 10.1111/joa.12007
- Gorbachova T, Melenevsky Y, Cohen M, et al. Osteochondral lesions of the knee: differentiating the most common entities at MRI. RadioGraphics. 2018;38(5):1478–1495. doi: 10.1148/rg.2018180044
- Mears SC, McCarthy EF, Jones LC, Hungerford DS, Mont MA. Characterization and pathological characteristics of spontaneous osteonecrosis of the knee. Iowa Orthop J. 2009;29:38–42.
- Geith T, Stellwag A-C, Muller PE, et al. Is bone marrow edema syndrome a precursor of hip or knee osteonecrosis? Results of 49 patients and review of the literature. Diagnostic and Interventional Radiology. 2020;26(4):355–362. doi: 10.5152/dir.2020.19188
- Horas K, Fraissler L, Maier G, et al. High prevalence of vitamin D deficiency in patients with bone marrow edema syndrome of the foot and ankle. Foot & Ankle International. 2017;38(7):760–766. doi: 10.1177/1071100717697427
- Arjonilla A, Calvo E, Alvarez L, et al. Transient bone marrow oedema of the kneе. Knee. 2005;12(4):267–9. doi: 10.1016/j.knee.2004.05.009
- Klontzas ME, Vassalou EE, Zibis AH, Bintoudi AS, Karantanas AH. MR imaging of transient osteoporosis of the hip: an update on 155 hip joints. European Journal of Radiology. 2015;84(3):431–436. doi: 10.1016/j.ejrad.2014.11.022
- Sprinchorn E, O’Sullivan R, Beischer AD. Transient bone marrow edema of the foot and ankle and its association with reduced systemic bone mineral density. Foot & Ankle International. 2011;32(5):508–512. doi: 10.3113/FAI.2011.0508
- Agarwala S, Vijayvargiya M. Single Dose Therapy of Zoledronic Acid for the Treatment of Transient Osteoporosis of Hip. Ann Rehabil Med. 2019;43(3):314–320. doi: 10.5535/arm.2019.43.3.314
- Edmonds EW, Shea KG. Osteochondritis dissecans: editorial comment. Clin Orthop Relat Res. 2013;471(4):1105–1106. doi: 10.1007/s11999-013-2837-6
- Kessler JI, Nikizad H, Shea KG, et al. The demographics and epidemiology of osteochondritis dissecans of the knee in children and adolescents. Am J Sports Med. 2014;42(2):320–326. doi: 10.1177/0363546513510390
- Laor T, Zbojniewicz AM, Eismann EA, et al. Juvenile osteochondritis dissecans: is it a growth disturbance of the secondary physis of the epiphysis? AJR. 2012;199(5):1121–1128. doi: 10.2214/AJR.11.8085
- Kessler JI, Jacobs JC Jr, Cannamela PC, et al. Childhood obesity is associated with osteochondritis dissecans of the knee, ankle, and elbow in children and adolescents. J Pediatr Orthop. 2018;38(5):e296–e299. doi: 10.1097/BPO.0000000000001158
- Sanchez TR, Jadhav SP, Swischuk LE. MR imaging of pediatric trauma. Magn Reson Imaging Clin N Am. 2009;17(3):439–450. doi: 10.1016/j.mric.2009.03.007
- Krause M, Lehmann D, Amling M, et al. Intact bone vitality and increased accumulation of nonmineralized bone matrix in biopsy specimens of juvenile osteochondritis dissecans: a histological analysis. Am J Sports Med. 2015;43(6):1337–47. doi: 10.1177/0363546515572579
- Torgashin AN, Rodionova SS. Osteonecrosis in patients who have undergone COVID-19: mechanisms of development, diagnosis, treatment at early stages (literature review). Travmatologiya i ortopediya Rossii. 2022;28(1):128–137. (In Russ.). doi: 10.17816/2311-2905-1707
- Narvaez J, Narvaez JA, Rodriguez-Moreno J, Roig-Escofet D. Osteonecrosis of the knee: differences among idiopathic and secondary types. Rheumatology. 2000;39(9):982–989. doi: 10.1093/rheumatology/39.9.982
- D’Anjou MA, Troncy E, Moreau M, et al. Temporal assessment of bone marrow lesions on magnetic resonance imaging in a canine model of knee osteoarthritis: impact of sequence selection. Osteoarthr Cartil. 2008;16(11):1307–11. doi: 10.1016/j.joca.2008.03.022
- Zanetti M, Bruder E, Romero J, Hodler J. Bone Marrow Edema Pattern in Osteoarthritic Knees: Correlation between MR Imaging and Histologic Findings. Radiology. 2000;215(3):835–840. doi: 10.1148/radiology.215.3.r00jn05835
- Attur MG, Dave M, Akamatsu M, et al. Osteoarthritis or osteoarthrosis: the definition of inflammation becomes a semantic issue in the genomic era of molecular medicine. Osteoarthritis Cartilage. 2002;10(1):1–4. doi: 10.1053/joca.2001.0488
- Karateev AE, Lila AM. Osteoarthritis: modern clinical concept and some promising therapeutic approaches. Nauchno-prakticheskaya revmatologiya. 2018;56(1):70–81. (In Russ.). doi: 10.14412/1995-4484-2018-70-81
- Maraghelli D, Brandi ML, Cerinic MM, et al. Edema-like marrow signal intensity: a narrative review with a pictorial essay. Skeletal Radiology. 2021;50(4):645–663. doi: 10.1007/s00256-020-03632-4
- Meng X, Wang Z, Zhang X, et al. Rheumatoid Arthritis of Knee Joints: MRI-Pathological Correlation. Orthop Surg. 2018;10(3):247–254. doi: 10.1111/os.12389
- Sudoł-Szopińska I, Kontny E, Maśliński W, et al. Significance of bone marrow edema in pathogenesis of rheumatoid arthritis. Pol J Radiol. 2013;78(1):57–63. doi: 10.12659/PJR.883768
- Narvaez JA, Narváez J, De Lama E, et al. MR imaging of early rheumatoid arthritis. RadioGraphics. 2010;30(1):143–63. doi: 10.1148/rg.301095089
- Moses V, Parmar HA, Sawalha AH. Magnetic resonance imaging and computed tomography in the evaluation of crowned dens syndrome secondary to calcium pyrophosphate dihydrate. J Clin Rheumatol. 2015;21(7):368–9. doi: 10.1097/RHU.0000000000000315
- Kudaeva FM, Barskova VG, Smirnov AV, et al. Comparison of three methods of radiation diagnosis of pyrophosphate arthropathy. Nauchno-prakticheskaya revmatologiya. 2012;50(3):55–59. (In Russ.). doi: 10.14412/1995-4484-2012-710
- Starr AM, Wessely MA, Albastaki U, et al. Bone marrow edema: pathophysiology, differential diagnosis and imaging. Acta Radiol. 2008;49(7):771–86. doi: 10.1080/02841850802161023
- Torgashin A N, Rodionova SS. Postarthroscopic osteonecrosis of the condyles of the femur and tibia. N.N. Priorov Journal of Traumatology and Orthopedics. 2018;(3–4):113–118. (In Russ.). doi: 10.17116/vto201803-041113
- Pruès-Latour V, Bonvin JC, Fritschy D. Nine cases of osteonecrosis in elderly patients following arthroscopic meniscectomy. Knee Surg Sports Traumatol Arthrosc. 1998;6(3):142–7. doi: 10.1007/s001670050090
- Strauss EJ, Kang R, Bush-Joseph C, et al. The diagnosis and management of spontaneous and post-arthroscopy osteonecrosis of the knee. Bull NYU Hosp Jt Dis. 2011;69(4):320–30.
- Yao L, Stanczak J, Boutin RD. Presumptive subarticular stress reactions of the knee: MRI detection and association with meniscal tear patterns. Skeletal Radiol. 2004;33(5):260–264. doi: 10.1007/s00256-004-0751-4
Supplementary files
