РОЛЬ МУТАЦИЙ ГЕНОВ piwi И aub В РАДИАЦИОННО-ИНДУЦИРОВАННОМ ОТВЕТЕ У Drosophila melanogaster
- Авторы: Юшкова Е.А.1
-
Учреждения:
- Институт биологии Коми научного центра Уральского отделения РАН
- Выпуск: Том 65, № 1 (2025)
- Страницы: 64-73
- Раздел: Молекулярная радиобиология
- URL: https://bakhtiniada.ru/0869-8031/article/view/308033
- DOI: https://doi.org/10.31857/S0869803125010066
- EDN: https://elibrary.ru/kondgn
- ID: 308033
Цитировать
Аннотация
В данном исследовании впервые получены сведения о чувствительности животных с дисфункцией геновpiwiи aubк хроническому облучению в малых дозах (20 сГр) и проявлении у анализируемых мутантов радиоадаптивного ответа. Реакция мутантных генотиповDrosophila melanogasterна облучение была проанализирована по показателям “продолжительность жизни”, “фертильность” и “повреждения ДНК”. Результаты экспериментов показали, что у самок с мутациейpiwiобнаружено адаптивное действие хронического облучения в малых дозах (20 сГр) в ответ на последующую экспозицию в дозе 60 Гр. Хроническое низкоинтенсивное облучение не повлияло на репродуктивные функции и уровень повреждений ДНК в гонадах особей с дисфункцией геновpiwiи aub, но привело к повышению их продолжительности жизни. Таким образом, функциональное снижение некоторых генов семействаArgonauteможет модифицировать эффекты облучения с формированием у животных радиорезистентных признаков.
Об авторах
Е. А. Юшкова
Институт биологии Коми научного центра Уральского отделения РАН
Автор, ответственный за переписку.
Email: ushkova@ib.komisc.ru
Сыктывкар, Россия
Список литературы
- Nikjoo H., O’Neill P, Wilson W.E. et al. Computational approach for determining the spectrum of DNA damage induced by ionizing radiation.Radiat. Res. 2001;156(5):577–583. https://doi.org/10.1667/0033-7587(2001)156[0577: cafdts]2.0.co;2
- Wei J., Wang B., Wang H. et al. Radiation-induced normal tissue damage: Oxidative stress and epigenetic mechanisms.Oxid. Med. Cell. Longev. 2019;2019: 3010342. https://doi.org/10.1155/2019/3010342
- Weigel C., Veldwijk M.R., Oakes C.C. et al. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis.Nat. Commun. 2016;7:10893. https://doi.org/10.1038/ncomms10893
- Yushkova E. Genetic mechanisms of formation of radiation-induced instability of the genome and its transgenerational effects in the descendants of chronically irradiated individuals of Drosophila melanogaster.Radiat. Environ. Biophis. 2020;59(2): 221–236. https://doi.org/10.1007/s00411-020-00833-2
- Yushkova E. Contribution of transposable elements to transgenerational effects of chronic radioactive exposure of natural populations of Drosophila melanogasterliving for a long time in the zone of the Chernobyl nuclear disaster.J. Environ. Radioact. 2022a;251–252:106945. https://doi.org/10.1016/j.jenvrad.2022.106945
- Seong K.M., Cenci G. Editorial: The genetic and epigenetic bases of cellular response to ionizing radiation.Front. Genet. 2022;13:857168. https://doi.org/10.3389/fgene.2022.857168
- Shesterikova E.M., Bondarenko V.S., Volkova P.Yu.Differential gene expression in chronically irradiated herbaceous species from the Chernobyl exclusion zone.Int. J. Radiat. Biol. 2023;99(2):229–237. https://doi.org/10.1080/09553002.2022.2087927
- Shin E., Lee S., Kang H. et al. Organ-specific effects of low dose radiation exposure: A comprehensive review.Front. Genet. 2020;11:566244. https://doi.org/10.3389/fgene.2020.566244
- Guéguen Y., Bontemps A., Ebrahimian T.G. Adaptive responses to low doses of radiation or chemicals their cellular and molecular mechanisms.Cell. Mol. Life Sci. 2019;76(7):1255‒1273. https://doi.org/10.1007/s00018-018-2987-5
- Yushkova E. Radiobiological features in offspring of natural populations of Drosophila melanogasterafter Chernobyl accident.Environ. Mol. Mutagen. 2022b;63:84–97. https://doi.org/10.1002/em.22476
- Koval L., Proshkina E., Shaposhnikov M., Moskalev A. The role of DNA repair genes in radiation-induced adaptive response in Drosophila melanogasteris differential and conditional.Biogerontol. 2020;21:45–56. https://doi.org/10.1007/s10522-019-09842-1
- Dubrova Yu.E., Sarapultseva E.I. Radiation-induced transgenerational effects in animals.Int. J. Radiat. Biol. 2022;98(6):1047–1053. https://doi.org/10.1080/09553002.2020.1793027
- Sato K., Siomi M.C. The piRNA pathway in Drosophilaovarian germ and somatic cells.Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 2020;96(1):32–42. https://doi.org/10.2183/pjab.96.003
- Toth K.F., Pezic D., Stuwe E. Webster A. The piRNA pathway guards the germline genome against transposable elements.Adv. Exp. Med Biol. 2016;886:51–77. https://doi.org/10.1007/978-94-017-7417-8_4
- Gonzalez L.E., Tang X., Lin H. Maternal Piwi regulates primordial germ cell development to ensure the fertility of female progeny in Drosophila.Genetics. 2021;219(1):iyab091. https://doi.org/10.1093/genetics/iyab091
- Sousa-Victor P., Ayyaz A., Hayashi R. et al. Piwi is required to limit exhaustion of aging somatic stem cells.Cell Reports. 2017;20:2527–2537. https://doi.org/10.1016/j.celrep.2017.08.059
- Proshkina E., Yushkova E., Koval L. et al. Tissue-specific knockdown of genes of the Argonautefamily modulates lifespan and radioresistance in Drosophila melanogaster.Int. J. Mol. Sci. 2021;22(5):2396. https://doi.org/10.3390/ijms22052396
- Evangelou A., Ignatiou A., Antoniou C. et al. Unpredictable effects of the genetic background of transgenic lines in physiological quantitative traits.G3 (Bethesda). 2019;9(11):3877–3890. https://doi.org/10.1534/g3.119.400715
- Theron E., Maupetit-Mehouas S., Pouchin P. et al. The interplay between the Argonaute proteins Piwi and Aub withinDrosophilagermarium is critical for oogenesis, piRNA biogenesis and TE silencing.Nucl. Acids Res. 2018;46:10052–10065. https://doi.org/10.1093/nar/gky695
- Adashev V.E., Kotov A.A., Bazylev S.S. et al.Stellategenes and the piRNA pathway in speciation and reproductive isolation of Drosophila melanogaster.Front. Genet. 2021;11:610665. https://doi.org/10.3389/fgene.2020.610665
- Yushkova E.A. The effects of transpositions of functionalI retrotransposons depend on the conditions and dose of parental exposure.Int. J. Radiat. Biol. 2023;99(5):737–749. https://doi.org/10.1080/09553002.2023.2142978
- Olive P.L., Wlodek D., Durand R.E., Banáth J.P. Factors influence DNA migration from individual cells subjected to gel electrophoresis.Exp. Cell Res. 1992;198(2):259–260. https://doi.org/10.1016/0014-4827(92)90378-l
- Han S.K., Lee D., Lee H. et al. OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research.Oncotarget. 2016;7:56147–56152. https://doi.org/10.18632/oncotarget.11269
- Bonner W.M. Low-dose radiation: Thresholds, bystander effects, and adaptive responses.PNAS. 2003;100(9):4973–4975. https://doi.org/10.1073/pnas.1031538100
- Asaithamby A., Chen D.J. Cellular Responses to DNA double-strand breaks after low-dose gamma-irradiation.Nucl. Acid. Res. 2009;37(12):3912⎯3923. https://doi.org/10.1093/nar/gkp237
- Юшкова Е.А., Зайнуллин В.Г. Радиационно-индуцированная фрагментация ДНК в клетках соматических и генеративных тканейDrosophila melanogaster.Радиац. биология. Радиоэкология. 2015;55(1):97–103. [Yushkova E., Zainullin V. Radiation-induced DNA fragmentation in cells of somatic and generative tissues of Drosophila melanogaster. Radiats. Biol. Radioecol.2015;55(1):97–103. (In Russ.)]. https://doi.org/10.7868/S0869803115010178
- Wayne M.L., Soundararajan U., Harshman L.G. Environmental stress and reproduction in Drosophila melanogaster: starvation resistance, ovariole numbers and early age egg production.BMC Evol. Biol. 2006;6:57. https://doi.org/10.1186/1471-2148-6-57
- Landis G., Shen J., Tower J. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster. Aging. 2012;4(11):768–789. https://doi.org/10.18632/aging.100499
- Belyi A.A., Alekseev A.A., Fedintsev A.Y. et al. The resistance of Drosophila melanogasterto oxidative, genotoxic, proteotoxic, osmotic stress, infection, and starvation depends on age according to the stress factor.Antioxidants. 2020;9:1239. https://doi.org/10.3390/antiox9121239
- Pappalardo A.M., Ferrito V., Biscotti M.A. et al. Transposable elements and stress in vertebrates: An overview.Int. J. Mol. Sci. 2021;22(4):1970. https://doi.org/10.3390/ijms22041970
- Czech B., Preall J.B., McGinn J., Hannon G.J.A transcriptome-wide RNAi screen in the Drosophilaovary reveals factors of the germline piRNA pathway.Mol. Cell. 2013;50:749–761. https://doi.org/10.1016/j.molcel.2013.04.007
- Russell S.J., LaMarre J. Transposons and the PIWI pathway: genome defense in gametes and embryos.Reproduction. 2018;156(4):R111–R124. https://doi.org/10.1530/REP-18-0218
- Ross R.J., Weiner M.M., Lin H. PIWI proteins and PIWI-interacting RNAs in the soma.Nature. 2014;505:353–359. https://doi.org/10.1038/nature12987
- Jones B.C., Wood J.G., Chang C. et al. A somatic piRNA pathway in the Drosophilafat body ensures metabolic homeostasis and normal lifespan.Nat. Commun. 2016;7:13856. https://doi.org/10.1038/ncomms13856
- Zuo L., Wang Z., Tan Y. et al. piRNAs and their functions in the brain.Int. J. Hum. Genet. 2016;16:53–60. https://doi.org/10.1080/09723757.2016.11886278
- Perera B.P.U., Tsai Z. T.-Y., Colwell M. et al. Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue-specific piRNA.Epigenetics. 2019;14(5):504–521. https://doi.org/10.1080/15592294.2019.1600389
- Lin K.Y., Wang W.D., Lin C.H. et al. Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling.Nat. Commun. 2020;11:3147. https://doi.org/10.1038/s41467-020-16858-6
- Rajasethupathy P., Antonov I., Sheridan. R et al. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity.Cell. 2012;149:693–707. https://doi.org/10.1016/j.cell.2012.02.057
- Phay M., Kim H.H., Yoo S. Analysis of piRNA-like small non-coding RNAs present in axons of adult sensory neurons.Mol. Neurobiol. 2018;55:483–494. https://doi.org/10.1007/s12035-016-0340-2
- Praher D., Zimmermann B., Genikhovich G. et al. Characterization of the piRNA pathway during development of the sea anemoneNematostella vectensis.RNA Biol. 2017;14:1727–1741. https://doi.org/10.1080/15476286.2017.1349048
- Ma Z., Wang H., Cai Y. et al. Epigenetic drift of H3K27me3 in aging links glycolysis to healthy longevity in Drosophila.eLife. 2018;7:e35368. https://doi.org/10.7554/eLife.35368
- Heestand B.,Simon M.,Frenk S. et al.Transgenerational sterility of Piwi mutants represents a dynamic form of adultreproductive diapause.Cell Rep. 2018;23:156–171. https://doi.org/10.1016/j.celrep.2018.03.015
- Yushkova E. Interaction effect of mutations in the genes (piwiand aub) of the Argonautefamily and hobotransposons on the integral survival parameters of Drosophila melanogaster. Biogerontology. 2024;5:131–146. https://doi.org/10.1007/s10522-023-10062-x
- Brennecke J., Aravin A.A., Stark A. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila.Cell. 2007;128:1089–1103. https://doi.org/10.1016/j.cell.2007.01.043
- Gainetdinov I., Colpan C., Arif A, Cecchini K., Zamore P. A single mechanism of biogenesis, initiated and directed by PIWI proteins, explains piRNA production in most animals.Mol. Cell. 2018;71:775–790. https://doi.org/10.1016/j.molcel.2018.08.007
- van Lopik J., Alizada A., Trapotsi M.-A. et al. Unistrand piRNA clusters are an evolutionarily conserved mechanism to suppress endogenous retroviruses across the Drosophilagenus.Nat. Commun. 2023;14:7337. https://doi.org/10.1038/s41467-023-42787-1
- Senti K.A., Jurczak D., Sachidanandam R., Brennecke J. piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire.Genes Dev. 2015;29(16):1747–1762. https://doi.org/10.1101/gad.267252.115
Дополнительные файлы
