Вариационный подход к построению дискретной математической модели движения маятника с вибрационным подвесом с трением

Обложка

Цитировать

Полный текст

Аннотация

Основная цель настоящего исследования триедина и состоит, во-первых, в построении косвенного вариационного принципа Гамильтона для задачи о движении маятника с точкой подвеса, совершающей малые колебания вдоль прямой, составляющей малый угол наклона с вертикалью. Во-вторых, в построении на его основе соответствующей разностной схемы. В-третьих, в ее исследовании методами численного анализа. Методы. Задача о движении указанного маятника рассматривается как частный случай исходной краевой задачи для нелинейного дифференциального уравнения второго порядка. Для решения вопроса о ее вариационной формулировке использован критерий потенциальности операторов – симметричность производной Гато нелинейного оператора, определяемого поставленной задачей. Этот же критерий использован для построения вариационного множителя и построения соответствующего косвенного вариационного принципа Гамильтона. На его основе построен и исследован дискретный аналог исходной краевой задачи и задачи о движении маятника. Результаты. Доказано, что оператор исходной краевой задачи не является потенциальным относительно классической билинейной формы. Найден соответствующий вариационный множитель и построен косвенный вариационный принцип Гамильтона. На его основе получен дискретный аналог исходной краевой задачи и построено ее решение. Отсюда как частные случаи получаются соответствующие утверждения для указанной задачи о движении маятника. Проведен ряд численных экспериментов, характеризующих зависимость решений задачи о движении маятника от изменения параметров. Заключение. Представлен вариационный подход к построению двух различных разностных схем для задачи о движении маятника с точкой подвеса, совершающей малые колебания вдоль прямой, составляющей малый угол с вертикалью. Приведены результаты численного моделирования при различных параметрах задачи. Численные решения показывают, что при достаточно малой амплитуде колебаний и достаточно большой частоте колебаний точки подвеса маятник совершает периодическое движение.

Об авторах

Владимир Михайлович Савчин

Российский университет дружбы народов

ул. Миклухо-Маклая, дом 6

Фыок Тоан Чинь

Российский университет дружбы народов

ул. Миклухо-Маклая, дом 6

Список литературы

  1. Капица П. Л. Динамическая устойчивость маятника при колеблющейся точке подвеса // Журнал экспериментальной и теоретической физики. 1951. Т. 21, № 5. С. 588-597.
  2. Капица П. Л. Маятник с вибрирующим подвесом // Успехи физических наук. 1951. Т. 44, № 5. С. 7-20. doi: 10.3367/UFNr.0044.195105b.0007.
  3. Боголюбов Н. Н. Теория возмущений в нелинейной механике // Сборник трудов Института строительной механики (АН УССР). 1950. Т. 14. С. 9-34.
  4. Богатов Е. М., Мухин Р. Р. Метод усреднения, маятник с вибрирующим подвесом: Н. Н. Боголюбов, А. Стефенсон, П. Л. Капица и другие // Известия вузов. ПНД. 2017. Т. 25, № 5. С. 69-87. doi: 10.18500/0869-6632-2017-25-5-69-87.
  5. Butikov E. I. The rigid pendulum - an antique but evergreen physical model // European Journal of Physics. 1999. Vol. 20, no. 6. P. 429-441. doi: 10.1088/0143-0807/20/6/308.
  6. Самарский А. А. Теория разностных схем. М.: Наука, 1989. 656 с.
  7. Головизнин В. М., Самарский А. А., Фаворский А. П. Вариационный подход к построению конечно-разностных моделей в гидродинамике // Доклады Академии наук СССР. 1977. Т. 235, № 6. С. 1285-1288.
  8. Филиппов В. М., Савчин В. М., Шорохов С. Г. Вариационные принципы для непотенциальных операторов // Итоги науки и техники. Серия «Современные проблемы математики. Новейшие достижения». Т. 40. М.: ВИНИТИ, 1992. С. 3-176.
  9. Савчин В. М. Математические методы механики бесконечномерных непотенциальных систем. М.: Издательство Университета дружбы народов, 1991. 237 с.
  10. Демиденко Г. В., Дулепова А. В. Об устойчивости движения перевернутого маятника с вибрирующей точкой подвеса // Сибирский журнал индустриальной математики. 2018. Т. 21, № 4. С. 39-50. doi: 10.17377/sibjim.2018.21.404.
  11. Демиденко Г. В., Дулепова А. В. О периодических решениях одного дифференциального уравнения второго порядка // Современная математика. Фундаментальные направления. 2021. Т. 67, № 3. С. 535-548. doi: 10.22363/2413-3639-2021-67-3-535-548.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».