Моделирование самоиндуцированного капиллярного распада струи вязкой жидкости

Обложка

Цитировать

Полный текст

Аннотация

Цель исследования — выявление закономерностей самоиндуцированного распада струи вязкой жидкости, истекающей с малой скоростью из капиллярного отверстия в условиях микрогравитации. Метод исследования — численное моделирование закономерностей самоиндуцированного капиллярного распада с помощью методов механики Лагранжа. Результаты. Верифицированная методика численного моделирования капиллярной струи вязкой жидкости, основанная на методах механики Лагранжа. Выявленные закономерности самоиндуцированного распада вязкой струи в условиях микрогравитации. Зависимость длины нераспавшейся части струи от вязкости жидкости и скорости ее истечения из капиллярной форсунки. Заключение. Разработанная методика численного моделирования позволяет корректно и эффективно (с точки зрения используемого вычислительного ресурса) моделировать динамику капиллярной струи с учетом сложных нелинейных и граничных эффектов. Установлено выраженное влияние вязкости на закономерности распада струи, движущейся с малой скоростью. Полученные спектральные характеристики возмущений в струе позволяют поставить вопрос о возможности разработки асимптотической теории самоиндуцированного распада вязкой струи.

Об авторах

Андрей Александрович Сафронов

Государственный научный центр Российской Федерации “Исследовательский центр имени М.В. Келдыша”

Онежская ул., д. 8, Москва, Россия, 125438

Анатолий Анатольевич Коротеев

Государственный научный центр Российской Федерации “Исследовательский центр имени М.В. Келдыша”

Онежская ул., д. 8, Москва, Россия, 125438

Алексей Львович Григорьев

Государственный научный центр Российской Федерации “Исследовательский центр имени М.В. Келдыша”

Онежская ул., д. 8, Москва, Россия, 125438

Николай Иванович Филатов

Государственный научный центр Российской Федерации “Исследовательский центр имени М.В. Келдыша”

Онежская ул., д. 8, Москва, Россия, 125438

Список литературы

  1. Демянко Ю. Г., Конюхов Г. В., Коротеев А. С., Кузьмин Е. П., Павельев А. А. Ядерные ракетные двигатели. М.: Норма-Информ, 2001. 414 с.
  2. Коротеев А. А. Капельные холодильники - излучатели космических энергетических установок нового поколения. М.: Издательство «Машиностроение», 2008. 184 с.
  3. Бондарева Н. В., Глухов Л. М., Коротеев А. А., Красовский В. Г., Кустов Л. М., Нагель Ю. А., Сафронов А. А., Филатов Н. И., Черникова Е. А. Бескаркасные системы отвода низкопотенциального тепла в космосе: успехи отработок и нерешенные задачи // Известия Российской академии наук. Энергетика. 2015. № 4. С. 130–142.
  4. Коротеев А. А., Сафронов А. А., Филатов Н. И., Григорьев А. Л., Хлынов А. В. Исследование генераторов капель бескаркасных систем теплоотвода в космосе // Космическая техника и технологии. 2023. № 1 (40). С. 40–51.
  5. Fuchikami N., Ishioka S., Kiyono K. Simulation of a dripping faucet // Journal of the Physical Society of Japan. 1999. Vol. 68, no. 4. P. 1185–1196. doi: 10.1143/JPSJ.68.1185.
  6. Kiyono K., Fuchikami N. Bifurcations induced by periodic forcing and taming chaos in dripping faucets // Journal of the Physical Society of Japan. 2002. Vol. 71, no. 1. P. 49–55. DOI: 10.1143/ JPSJ.71.49.
  7. Umemura A., Osaka J., Shinjo J., Nakamura Y., Matsumoto S., Kikuchi M., Taguchi T., Ohkuma H., Dohkojima T., Shimaoka T., Sone T., Nakagami H., Ono W. Coherent capillary wave structure revealed by ISS experiments for spontaneous nozzle jet disintegration // Microgravity Sci. Technol. 2020. Vol. 32, no. 3. P. 369–397. doi: 10.1007/s12217-019-09756-0.
  8. Umemura A. Self-destabilising loop of a low-speed water jet emanating from an orifice in microgravity // Journal of Fluid Mechanics. 2016. Vol. 797. P. 146–180. doi: 10.1017/jfm.2016.271.
  9. Umemura A., Osaka J. Self-destabilizing loop observed in a jetting-to-dripping transition // Journal of Fluid Mechanics. 2014. Vol. 752. P. 184–218. doi: 10.1017/jfm.2014.329.
  10. Umemura A. Model for the initiation of atomization in a high-speed laminar liquid jet // Journal of Fluid Mechanics. 2014. Vol. 757. P. 665–700. doi: 10.1017/jfm.2014.511.
  11. Yakubenko P. A. Capillary instability of an ideal jet of large but finite length // European Journal of Mechanics - B/Fluids. 1997. Vol. 16, no. 1. P. 39–47.
  12. Куликовский А. Г. Об устойчивости однородных состояний // Прикладная математика и механика. 1966. Т. 30, № 1. С. 148–153.
  13. Safronov A. A. Investigation of the structure of waves generated by a δ-perturbation of the surface of a capillary jet // Russian Journal of Nonlinear Dynamics. 2022. Vol. 18, no. 3. P. 367–378. doi: 10.20537/nd220303.
  14. Аметистов Е. В., Дмитриев А. С. Монодисперсные системы и технологии. М.: Издательство МЭИ, 2002. 392 с.
  15. Eggers J., Dupont T. F. Drop formation in a one-dimensional approximation of the Navier–Stokes equation // Journal of Fluid Mechanics. 1994. Vol. 262. Р. 205–221. doi: 10.1017/S0022 112094000480.
  16. Сафронов А. А. Особенности капиллярного распада струй жидкости при числах Онезорга больше единицы // Инженерно-физический журнал. 2017. Т. 90, № 1. С. 176–185.
  17. Бондарева Н. В., Григорьев А. Л., Коровин Т. Г., Коротеев А. А., Сафронов А. А., Скоробогатько Т. Д., Филатов Н. И., Хлынов А. В. Экспериментальное исследование влияния числа Онезорге на размеры капель, образовавшихся в результате капиллярного распада струи // Теплофизика и аэромеханика. 2019. Т. 26, № 5. С. 773–777.
  18. Eggers J. Drop formation – an overview // ZAMM. Z. Angew. Math. Mech. 2005. Vol. 85, no. 6. Р. 400–410. doi: 10.1002/zamm.200410193.
  19. Ландау Л. Д., Лифшиц Е. М. Гидродинамика. М.: Наука, 1986. 736 с.
  20. Clavet S., Beaudoin P., Poulin P. Particle-based viscoelastic fluid simulation // In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation. 29-31 July 2005, Los Angeles, California. SCA, 2005. P. 219–228. doi: 10.1145/1073368.1073400.
  21. Сафронов А. А., Коротеев А. А., Филатов Н. И., Бондарева Н. В. Быстрые растущие волны в струе вязкой жидкости, инициированные колебаниями концевой капли // Теплофизика и аэромеханика. 2021. Т. 28, № 2. С. 255–263.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».