Thermodynamic Analysis of Mineral Formation Conditions in Crimean Salt Lakes (Using the Example of the lakes of the Yevpatoria Group)
- Authors: Charykova M.V1, Kayukova E.P1, Vasenko V.I2, Bessonova A.M1, Reshetnikova O.E1
-
Affiliations:
- Saint Petersburg State University
- Crimean Hydrogeological Operating Station
- Issue: Vol CLIV, No 3 (2025)
- Pages: 3–17
- Section: Articles
- URL: https://bakhtiniada.ru/0869-6055/article/view/355258
- DOI: https://doi.org/10.31857/S0869605525030012
- ID: 355258
Cite item
Abstract
Data on the chemical composition of surface and pore brines of 10 salt lakes of the Crimean Peninsula belonging to the Yevpatoria group are presented. Using the method of thermodynamic modeling, saturation indices for calcium and magnesium carbonates, gypsum, and halite were calculated and their dependence on the total salinity of brines was established. According to the modeling results and taking into account the chemical composition of brines, calcite and gypsum deposition is most likely in the least salty lakes (Bogaily, Moynaskoye, and Oburgskoye ones), and calcite, aragonite, dolomite, magnesite, gypsum, and halite deposition is possible in the saltiest lakes (Sasyk-Sivash, Airohi, Galgasskoye, and Terekii ones). Lakes Sakskoye, Aji-Baychi, and Konradskoye are characterized by an intermediate position in terms of brine salinity and a set of minerals, the deposition of which is possible from surface and pore brines.
Keywords
About the authors
M. V Charykova
Saint Petersburg State University
Email: m-char@yandex.ru
Saint Petersburg, Russia
E. P Kayukova
Saint Petersburg State University
Email: m-char@yandex.ru
Saint Petersburg, Russia
V. I Vasenko
Crimean Hydrogeological Operating Station
Email: m-char@yandex.ru
Saki, Russia
A. M Bessonova
Saint Petersburg State University
Email: m-char@yandex.ru
Saint Petersburg, Russia
O. E Reshetnikova
Saint Petersburg State University
Author for correspondence.
Email: m-char@yandex.ru
Saint Petersburg, Russia
References
- Alipour S. Hydrogeochemistry of seasonal variation of Urmia Salt Lake, Iran. Saline Systems. 2006. Vol. 2. N 9. P. 1—19.
- Bethke C. M. Geochemical and biogeochemical Reaction Modeling. Cambridge University press, 2008. 543 p.
- Boros E., Jurecska L., Taidr E., Vorös L., Kolpakova M. Chemical composition and trophic state of shallow saline steppe lakes in central Asia (North Kazakhstan). Environmental Monitoring and Assessment. 2017. Vol. 189. P. 1—12.
- Bowen B. B., Benison K. C. Geochemical characteristics of naturally acid and alkaline saline lakes in southern Western Australia. Appl. Geochem. 2009. Vol. 24. P. 268—284.
- Deocampo D. M., Jones B. F. Geochemistry of saline lakes. In: Treatise on Geochemistry. Amsterdam: Elsevier Pergamon. 2014. Vol. 7. P. 437—469.
- Getenet M., Ot’alora F., Emmerling F., Al-Sabbagh D., Garcia-Ruiz J. M. Mineral precipitation and hydrochemical evolution through evaporitic processes in soda brine (East African Rift Valley). 2022. Chem. Geol. Vol. 616. P. 121222.
- Guo Y., Zhang Y., Ma, N., Xu J., Zhang T. Long-term changes in evaporation over Siling Co Lake on the Tibetan Plateau and its impact on recent rapid lake expansion. Atmos. Res. 2019. Vol. 216. P. 141—150.
- Hamdani I., Assouline S., Tanny J., Lensky I. M., Gertman I., Mor Z., Lensky N. G. Seasonal and diurnal evaporation from a deep hypersaline lake: The Dead Sea as a case study. J. Hydrol. 2018. Vol. 562. P. 155—167.
- Harvie C. E., Weare J. H., Hardie L. W., Eugster H. P. Evaporation of seawater. Calculated mineral sequences. Science. 1980. Vol. 208. P. 498—500.
- Harvie C. E., Eugster H. P., Weare J. H. Mineral equilibria in the six-component seawater system Na—K—Mg—Ca—Cl—SO4—H2O at 25 °C. II. Compositions of the saturated solutions. Geochim. Cosmochim. Acta. 1982. Vol. 46. N 9. P. 1603—1618.
- Harvie C. E., Moller N., Weare J. H. The prediction of mineral solubilities in natural waters: the Na—K—Mg—Ca—H—Cl—SO4—OH—HCO3—CO3—CO2—H2O system to high ionic strengths at 25 °C. Geochim. Cosmochim. Acta. 1984. Vol. 48. N 5. P. 723—751.
- Jones B. F., Naftz D. L., Spencer R. J., Oviatt C. G. Geochemical evolution of Great Salt Lake, Utah, USA. Aquatic Geochem. 2009. Vol. 15. N 1. P. 95—121.
- Melese H., Debella H. J. Comparative study on seasonal variations in physico-chemical characteristics of four soda lakes of Ethiopia (Arenguade, Beseka, Chitu and Shala). Heliyon. 2023. Vol. 9. N 5. Paper 16308.
- Moller N. The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na–Ca–Cl–SO4–H2O system to high temperature and concentration. Geochim. Cosmochim. Acta. 1988. Vol. 52. N 4. P. 821—837.
- Nordstrom D. K., Campbell K. M. Modeling low-temperature geochemical processes. In: Treatise on Geochemistry. Amsterdam: Elsevier Pergamon, 2014. Vol. 7. P. 27—68.
- Zheng M., Liu X. Hydrochemistry of salt lakes of the Qinghai-Tibet plateau, China. Aquat. Geochem. 2009. Vol. 15. P. 293—320.
Supplementary files


