Morphology and composition of gold minerals from the placer deposit of Dunitovaya River (Maimecha-Kotui Province, Polar Siberia)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Complex gold-iridium-osmium placer deposits are associated with the Guli massif of ultramafic, alkaline rocks and carbonatites within the Maimecha-Kotui province in the northern part of the Siberian Platform. Unlike natural Os-Ir alloys, which are genetically related to ultramafic rocks, the bedrock source of gold remains controversial. We report, for the first time, morphological and compositional features of gold mineralization from the Quaternary deposits of the Dunitovaya River in the southern part of the Guli massif. According to the morphology, gold grains are subdivided into drop-shaped-rounded, lumpy, flattened-lumpy and lamellar varieties; their main morphometric parameters, gold fineness and average statistical characteristics of the chemical composition are presented. Based on their internal structure, the studied gold grains are subdivided into homogeneous, consisting predominantly of electrum of homogeneous composition, and heterogeneous, containing (1) several minerals (e.g., electrum, tetra-auricupride, auricupride) or (2) formed by electrum with a highly variable composition (i.e., from Au-bearing silver to Ag-bearing gold). The first copper isotopic data for gold grains from various morphological types of the Dunitovaya River are characterized by similar δ65Cu values in the range from −0.59 to 0.11‰ (δ65Cu average = −0.30±0.23‰, n = 5), which is in favor of a primitive source of ore matter. Taking into account the geological background of the location of channel and terrace deposits of the Dunitovaya River, the insignificant character of the transfer for placer gold (4−6 km), and the similarity of gold minerals from the Dunitovaya River with gold minerals from calcite carbonatite, we propose that the main bedrock sources of the studied morphological varieties of gold were the rocks of the Maimecha-Kotui ijolite-carbonatite complex.

Full Text

Restricted Access

About the authors

K. N. Malitch

Zavaritsky Institute of Geology and Geochemistry, Ural Branch RAS

Author for correspondence.
Email: dunite@yandex.ru
Russian Federation, Ekaterinburg

A. A. Voitin

Zavaritsky Institute of Geology and Geochemistry, Ural Branch RAS

Email: dunite@yandex.ru
Russian Federation, Ekaterinburg

References

  1. Badanina I.Yu., Malitch K.N., Goncharov M.M., Tuganova E.V. Precious metal placers of the Gulinsky massif (north of the Siberian platform): new data on unusual mineral associations of gold and platinum group metals. In: Mat. All-Rus. conf. “Native gold: typomorphism of mineral associations, conditions for the formation of deposits, problems of applied research” Moscow: IGEM RAS, 2010. Vol. 1. P. 56–58.
  2. Balmasova Y.A., Smol’skaya L.S., Lopatina L.A., Lopatin G.G., Lazarenkov V.G., Malitch K.N. Native osmium and iridosmine from the Guli massif. Doklady Earth Sci. 1992. Vol. 325. N 5. P. 154–157 (in Russian).
  3. Barannikov A.G. About the digitalization of the parameters of native gold particles in the study of placers and schlich-mineralogical studies. Proc. Ural State Mining Univ. 2021. N 2(62). P. 60–72 . (in Russian). doi: 10.21440/2307-2091-2021-2-60-72
  4. Ben Othman D., Luck J.M., Bodinier J.L., Arndt N.T., Albarede F. Cu-Zn isotopic variations in the Earth’s mantle. Geochim. Cosmochim. Acta. 2006. Vol. 70 (18 suppl. 1). P. A46.
  5. Cailleux A., Tricart J. Introduction to the study of sand and pebbles. Paris: Cent. Doc. Univ., 1959. Vol. 3. 364 p.
  6. Drits M.E., Bochvar N.R., Guzei L.S., Lysova E.V., Padezhnova E.M., Rokhlin L.L., Turkina N.I. Binary and multicomponent copper-based systems: Handbook (Abrikosov N.Kh., ed.). Moscow: Nauka, 1979. 248 p. (in Russian).
  7. Graham S., Pearson N., Jackson S., Griffin W., O’Reilly S.Y. Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit. Chem. Geol. 2004. Vol. 207. P. 147–169.
  8. Hérail G., Fornari M., Viscarra G., Miranda V. Morphological and chemical evolution of gold grains during the formation of a polygenic fluviatile placer: the Mio-Pleistocene Tipuani placer example (Andes, Bolivia). Chronicle of Mining Res. 1990. Vol. 500. P. 41–49.
  9. Egorov L.S. Ijolite-carbonatite plutonism (the Maimecha-Kotui Complex of Polar Siberia as an example). Leningrad: Nedra, 1991. 260 p. (in Russian).
  10. Kogarko L.N., Senin V.G. The first find of native gold in parent rocks of the Gulinskii Massif (Polar Siberia). Dokl. Earth Sci. 2011. Vol. 441. N 1. P. 1512–1513.
  11. Kogarko L.N., Kononova V.A., Orlova M.P., Wooley A.R. Alkaline rocks and carbonatites of the world. Part 2: Former USSR. London, UK: Chapman and Hall, 1995. 226 p.
  12. Krumbein W., Sloss L. Stratigraphy and Sedimentation. 2nd Edition. San Francisco: W.H. Freeman and Co., 1963. 660 p.
  13. Larson P.B., Maher K., Ramos F.C., Chang Z.S., Gaspar M., Meinert L.D. Copper-isotope ratios in magmatic and hydrothermal ore-forming environments. Chem. Geol. 2003. Vol. 201. N 3–4. Р. 337–350.
  14. Li W.-Q., Jackson S.E., Pearson N.J., Alard O., Chappell B.W. The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia. Chem. Geol. 2009. Vol. 258. P. 38–49.
  15. Liu S.-A., Huang J., Liu J., Wörner G., Yang W., Tang Y.-J., Chen Y., Tang L., Zheng J., Li S. Copper isotopic composition of the silicate Earth. Earth Planet. Sci. Lett. 2015. Vol. 427. P. 95–103.
  16. Luck J.-M., Ben Othman D., Albarede F. Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes. Geochim. Cosmochim. Acta. 2005. Vol. 69. P. 5351–5363.
  17. Loen J.S. Use of placer gold characteristics to locate bedrock gold mineralization. Expl. Mining Geol. 1995. Vol. 4. P. 335–339.
  18. Lopatin G.G. About the discovery of noble-metal placers in the Maimecha-Kotui province. In: Feature articles about the history of discoveries of mineral wealth of Taimyr (Samoilov A.G. ed.). Novosibirsk: Novosibirsk University, 2001. P. 156−158 (in Russian).
  19. Malitch K.N. Platinum-group elements in clinopyroxenite-dunite massifs of the Eastern Siberia (geochemistry, mineralogy, genesis). Saint Petersburg: Saint Petersburg Cartographic Factory VSEGEI, 1999. 296 p. (in Russian).
  20. Malitch K.N. Complex PGE deposits of the Polar Siberia (composition, sources and conditions of Formation). Habil. Dr. thesis. Ekaterinburg: IGG UB RAS, 2022. 269 p. (in Russian).
  21. Malitch K.N., Lopatin G.G. Geology and petrographic association of ultramafites of the Guli intrusion. In: Resources of Taimyr (Simonov O.N., Malitch N.S., eds.). Norilsk: VSEGEI Press, 1997a. N 2. P. 86–103 (in Russian).
  22. Malitch K.N., Lopatin G.G. New data on the metallogeny of the unique Guli clinopyroxenite-dunite Massif, Northern Siberia, Russia. Geol. Ore Deposites. 1997b. Vol. 39. N 3. P. 209–218.
  23. Malitch K.N., Rudashevskiy N.S. Bedrock platinum-metal mineralization in chromitite of the Guli Massif. Doklady Earth Sci. 1992. Vol. 327. N 8. P. 165–169.
  24. Malitch K.N., Badanina I.Yu., Goncharov M.M., Lopatin G.G., Naumenko N.G., Tuganova E.V. The Maimecha-Kotui Region: a new platinum province in Russia. Doklady Earth Sci. 1996. Vol. 348. N 4. P. 574–577.
  25. Malitch K.N., Malitch N.S., Simonov O.N., Lopatin G.G., Naumenko N.G. Iridium-osmium placers of the Maimecha-Kotuy province – the new Russian source for refractory platinum-group elements. Native Geol. 1998. N 3. P. 30–34 (in Russian).
  26. Malitch K.N., Auge T., Badanina I.Yu., Goncharov M.M., Junk S.A., Pernicka E. Os-rich nuggets from Au-PGE placers of the Maimecha-Kotui Province, Russia: a multidisciplinary study. Miner. Petrol. 2002. Vol. 76. P. 121–148.
  27. Malitch K.N., Sorokhtina N.V., Badanina I.Yu., Kononkova N.N. Parent sources of noble-metal placers of the Guli massif (Polar Siberia): new mineralogical data. Dokl. Earth Sci. 2013. Vol. 451. N. 1. P. 743−745.
  28. Malitch K.N., Lipenkov G.V., Ozornin D.A., Naumov M.V., Badanina I.Yu, Bulatov V.A., Voitin A.A. Gold mineralization from calcite-dolomite carbonatite of the Guli massif (Maimecha-Kotui province, Polar Siberia): first results. Dokl. Earth Sci. 2024a. Vol. 519. N 1. P. 1899–1905.
  29. Malitch K.N., Puchtel I.S., Badanina I.Yu., Votyakov S.L., Soloshenko N.G., Belousova E.A., Velivetskaya T.A., Ignatiev A.V. Sources of ore material in the platinum-group element deposits of Polar Siberia and the Middle Urals based on the data from radiogenic (Re-Os, Pt-Os) and stable (Cu, S) isotopes. Russian Geol. Geophys. 2024b. Vol. 65. N 3. P 366–387.
  30. Maréchal C., Albarède F. Ion-exchange fractionation of copper and zinc isotopes. Geochim. Cosmochim. Acta. 2002. V. 66. P. 1499–1509.
  31. Maréchal C., Telouk P., Albarede F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem. Geol. 1999. Vol. 156. P. 251–273.
  32. Melchiorre E.B., Mathur R., Kamenov G., Paredes J. Geochemical overprinting and secondary placer crystal formation in the La Cholla District, Quartzsite, Arizona, USA: evidence from copper isotopes, morphology, and trace elements. Minerals. 2023. Vol. 13. Paper 1444.
  33. Okamoto H., Chakrabarti D.J., Laughlin D.E., Massalski T.B. The Au-Cu (Gold-Copper) system. J. Phase Equilibria. 1987. Vol. 8. N 5. P. 454–474.
  34. Okuneva T.G., Karpova S.V., Streletskaya M.V., Soloshenko N.G., Kiseleva D.V. The method for Cu and Zn isotope ratio determination by MC ICP-MS using the AG MP-1 resin. Geodynamics & Tectonophysics. 2022. Vol. 13(2s). 0615.
  35. Ryabchikov I.D., Kogarko L.N., Sazonov A.M., Kononkova N.N. Formation of gold mineralization in ultramafic alkalic magmatic complexes. Dokl. Earth Sci. 2016. Vol. 468. N 2. P. 623–625.
  36. Sazonov A.M., Romanovsky A.E., Grinev O.M., Mayorova O.N., Pospelova L.N. Precious-metal mineralization of the Guli intrusion. Russian. Geol. Geophys. 1994, Vol. 35. N 9. P. 51–65 (in Russian).
  37. Sazonov A.M., Zvyagina E.A., Leontyev S.I., Gertner I.F., Krasnova T.S., Kolmakov Yu.V., Panina L.I., Chernyshov A.I., Makeev S.M. Platinum-bearing alkaline-ultrabasic intrusions of Polar Siberia. Tomsk: CNTI Press, 2001. 510 p. (in Russian).
  38. Sazonov A.M., Romanovsky A.E., Gertner I.F., Zvyagina E.A., Krasnova T.S., Grinev O.M., Silyanov S.A., Kolmakov Yu.V. Genesis of precious metal mineralization in intrusions of ultramafic, alkaline rocks and carbonatites in the north of the Siberian Platform. Minerals. 2021. Vol. 11. Paper 354.
  39. Sorokhtina N.V., Kogarko L.N., Zaitsev V.A., Kononkova N.N., Asavin A.M. Sulfide mineralization in the carbonatites and phoscorites of the Guli Massif (Polar Siberia), and their noble-metal potential. Geochem. Int. 2019. Vol. 64. N 11. P. 1125–1146.
  40. Spiridonov E.M. Review of gold mineralogy in the leading types of Au mineralization. In: Gold of the Kola Peninsula and adjacent regions (Proc.All-Russ. sci. conf. dedicated to the 80th anniv. of the Kola Scientific Centre of the RAS. Apatity, September 26–29, 2010) (ed. Yu.L. Voitekhovsky). Apatity: K&M Press, 2010. P. 143–171 (in Russian).
  41. Youngson J.H., Craw D. Variation in placer style, gold morphology, and gold particle behavior down gravel bed-load rivers: an example from the Shotover/Arrow-Kawarau-Clutha River System, Otago, New Zealand. Econ. Geol. 1999. Vol. 94. P. 615–634.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic geological map of the southern part of the Guli massif of ultramafic, alkaline rocks and carbonatites (compiled by geologists of the Polar Party of the Norilsk Integrated Geological Exploration Expedition). 1 – alluvial (channels, floodplains and terraces), lacustrine and fluvio-glacial deposits; 2–5 – Maimecha-Kotui ijolite-carbonatite complex: 2 – carbonatites of the seventh phase of the complex; 3 – nepheline and alkaline syenite of the fifth phase of the complex; 4 – biotite-pyroxene ultramafic rocks, malignite and shonkinite of the third phase of the complex; 5 – melilite rock of the second phase of the complex; 6, 7 – Guli clinopyroxenite-dunite complex: 6 – dunite (first phase), 7 – clinopyroxenite (second phase); cpx – metasomatic halos composed of olivine-bearing clinopyroxenite, wehrlite, and clinopyroxene-bearing dunite; 8 – meimechite (coarse grained picrite), lava breccias and meimechite tuffs, 9 – geological boundaries; 10 – faults (a – reliable, b – assumed); 11 – economic gold placers; 12 – sampling site for alluvial gold.

Download (53KB)
3. Fig. 2. Cross section along trench # 8 through the Dunitovaya River valley (compiled by geologists of the Polar Party of the Noril’sk Integrated Geological Exploration Expedition). 1 – soil-vegetative layer, 2 – peat, 3 – silt, 4 – clay, 5 – loam, 6 – sandy loam, 7 – sand, 8 – gravel, 9 – pebbles, 10 – boulders, 11 – gruss, 12 – crushed stone, 13 – boundaries of genetic types of loose sediments, 14 – productive layer.

Download (39KB)
4. Fig. 3. Typical features of alluvial gold grains within morphological varieties from placer deposit of the Dunitovaya River. а, б, в – drop-shaped-rounded (sample D30), г, д, е – lumpy (sample D39), ж, з, е – flattened-lumpy (sample D16), к, л, м – lamellar (sample D58). Images: (а, г, ж, к) under a binocular, (б, д, з, л) – in secondary electrons, (в, е, и, м) – in back-scattered electrons with compositional contrast.

Download (69KB)
5. Fig. 4. Histgram of roundness (a) and sphericity (b) values for gold grains from placer deposit of the Dunitovaya River.

Download (16KB)
6. Fig. 5. Diagram in coordinates sphericity – roundness for 58 gold grains from placer deposit of the Dunitovaya River. Numbers in the upper left corner of each square correspond to numbers of the studied samples, n – quantity of grains.

Download (41KB)
7. Fig. 6. Average chemical compositions of homogeneous gold grains within drop-shaped-rounded (a), lumpy (б), flattened-lumpy (в) and lamellar (г) morphological types from placer deposit of the Dunitovaya River in Ag-Au-Cu coordinates (at. %). Grain numbers correspond to those in Table. 2.

Download (22KB)
8. Fig. 7. Chemical compositions of heterogeneous gold grains from lumpy (а), flattened-lumpy (б), lamellar (в) and drop-shaped-rounded (г) morphological types from placer deposit of the Dunitovaya River in Ag-Au-Cu coordinates (at. %). Grain numbers correspond to those in Table. 2.

Download (20KB)
9. Fig. 8. Heterogeneous gold grains from placer deposit of the Dunitovaya River: (а) sample D7, (б) sample D8. Points with numbers 1–29 denote areas of electron microprobe analyses (EMPA) corresponding to the same numbers in Table 4. (Au, Ag) – electrum, Au – native gold, AuCu – tetraauricupride, Cu3Au – auricupride. BSE images.

Download (24KB)
10. Fig. 9. Histogram of transport distance values (km) from bedrock source for gold grains of drop-shaped-rounded (а), lumpy (б), flattened-lumpy (в) and lamellar (г) varieties from placer deposit of the Dunitovaya River.

Download (20KB)
11. Fig. 10. Au-Cu-Ag composition diagram (wt %) for gold minerals within heterogeneous grains D7 (а) and D8 (б) from placer deposit of the Dunitovaya River. The diagram shows isotherms of a ternary solid solution based on experimental data (Dritz et al., 1979). Points with numbers 1–29 denote areas of EMP analyses corresponding to the same numbers in Table 4.

Download (24KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».