Оптимизация реабилитационных стратегий у больных с сенсомоторными нарушениями при разноуровневом поражении центральной нервной системы


Цитировать

Полный текст

Аннотация

Несмотря на несомненные достижения в области нейрореабилитации, значительная часть больных имеют стойкие двигательные нарушения даже после своевременно и адекватно проведенных восстановительных мероприятий. В особой мере это касается пациентов в позднем восстановительном и резидуальном периодах после инсульта и с последствиями перенесенного повреждения спинного мозга. При обследовании методом транскраниальной магнитной стимуляции и соматосенсорных вызванных потенциалов 100 больных с сенсомоторными нарушениями, перенесших инсульт, и после спинального поражения (на уровне грудного отдела) обнаружено, что при разноуровневом поражении центральной нервной системы происходит формирование различных патологических состояний с комплексом сенсомоторных нарушений. Таким образом, выявленные патофизиологические изменения могут лечь в основу определения оптимальной программы нейрореабилитационного процесса, что поможет достичь большей степени восстановления двигательных функций у этих пациентов.

Об авторах

Евгения Викторовна Екушева

ГБОУ ВПО Первый МГМУ им. И. М. Сеченова Минздравсоцразвития России

Email: ekushevaev@mail.ru
Лаборатория патологии вегетативной нервной системы НИО неврологии НИЦ 119991, Москва, Россия

Ольга Александровна Шавловская

ГБОУ ВПО Первый МГМУ им. И. М. Сеченова Минздравсоцразвития России

Лаборатория патологии вегетативной нервной системы НИО неврологии НИЦ 119991, Москва, Россия

Игорь Владимирович Дамулин

ГБОУ ВПО Первый МГМУ им. И. М. Сеченова Минздравсоцразвития России

кафедра нервных болезней лечебного факультета 119991, Москва, Россия

Список литературы

  1. Анохин П. К. Узловые вопросы теории функциональных систем. М.; 1980.
  2. Зимина Е. В., Горохова И. Г., Даминов В. Д. Комбинированные методы двигательной реабилитации. Вестник национального медико-хирургического центра им. Н. И. Пирогова. 2008; 3 (1): 49—50.
  3. Екушева Е. В. Роль уровня поражения центральной нервной системы в формировании двигательных нарушений у больных с синдромом верхнего мотонейрона // Вестник неврологии, психиатрии и нейрохирургии. 2011; 9: 45—53.
  4. Екушева Е. В. Роль соматосенсорных афферентных систем в формировании картины двигательных расстройств у больных с полушарным инсультом. Вестник неврологии, психиатрии и нейрохирургии. 2012; 7: 59—64.
  5. Екушева Е. В. Изучение сенсомоторной интеграции у пациентов с поражением верхнего мотонейрона на разных уровнях. Врач-аспирант. 2012; 3.1 (52): 150—6.
  6. Екушева Е. В. Дифференцированный подход к нейрореабилитации пациентов с полушарным инсультом и дисфункцией соматосенсорных афферентных систем. В кн.: Тезисы докладов IV Международного конгресса "Нейрореабилитация-2012". Н. Новгород; 2012: 124.
  7. Кадыков А. С., Черникова Л. А., Шахпаронова Н. В. Реабилитация после инсульта. Атмосфера (нервные болезни). 2004; 1: 21—4.
  8. Кадыков А. С., Черникова Л. А., Шахпоронова Н. В. Реабилитация неврологических больных. М.: МЕДпресс-информ; 2008.
  9. Кадыков А. С., Шахпаронова Н. В. Восстановление двигательных функций. Общие принципы реабилитации. В кн.: Завалишин И. А. и др., ред. Синдром верхнего мотонейрона. Самара: Самар. отд. лит. фонда; 2005: 4—29.
  10. Черникова Л. А. Новые технологии в реабилитации больных, перенесших инсульт. Атмосфера. 2005; 2: 32—5.
  11. Шавловская О. А. Пластичность корковых структур в условиях неврологического дефицита, сопровождающегося расстройством движения в руке. Современные подходы в реабилитологии. Физиология человека. 2006; 32 (6): 119—25.
  12. Шавловская О. А. Восстановление моторной функции спастической постинсультной кисти немедикаментозными методами. Неврологический вестник. Журнал им. В. М. Бехтерева. 2007; 39 (4): 75—81.
  13. Brayn L. R., Myers J. B., Lephart S. M. Sensorimotor system measurement techniques. J. of Athletic Training. 2002; 37 (1): 85—98.
  14. Connell L. A. Somatosensory impairment after stroke: frequency of different deficits and their recovery. Clin. Rehabil. 2008; 22 (8): 758—67.
  15. Haavik-Taylor H., Murphy B. Cervical spine manipulation alters sensorimotor integration: A somatosensory evoked potential study. Clin. Neurophys. 2007; 118 (2): 391—402.
  16. Johansson B. B. Brain plasticity in health and disease. Keio J. Med. 2004; 53 (4): 231—46.
  17. Lo A. C., Guarino P. D., Richards L. G. et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 2010; 362: 1772—83.
  18. Mattle H. P., Savitz S. I. Advances in emerging therapies 2010. Stroke. 2011; 42 (2): 298—300.
  19. Merzenich M. M., Jenkins W. M. Reorganization of cortical representations of the hand following alterations of skin inputs induced by nerve injury, skin island transfers, and experience. J. Hand Ther. 1993; 6 (2): 89—104.
  20. Nelles G., Jentzen W., Jueptner M. et al. Arm training induced brain plasticity in stroke studied with serial PET. Neuroimag. 2001; 13 (6): 1146—54.
  21. Nudo R. J., Friel K. M., Delia S. W. Role of sensory deficits in motor impairments after injury to primary motor cortex. Neuropharmacology. 2000; 39: 733—42.
  22. Popovich D. B., Popovich M. B., Sinkjaer T. Neurorehabilitation of upper extremities in humans with sensory-motor impairment. Neuromodulation. 2002; 5 (1): 54—67.
  23. Riley J. D., Le V., Der-Yeghiaian L. et al. Anatomy of stroke injury predicts gains from therapy. Stroke. 2011; 42 (2): 421—6.
  24. Sabbah P., Leveque C., Gay S. et al. Sensorimotor cortical activity in patients with complete spinal cord injury: a functional magnetic resonance imaging study. J. Neurotrauma. 2002; 19 (1): 53—60.
  25. Shibasaki H. Cortical activities associated with voluntary movements and involuntary movements. Clin. Neurophysiol. 2012; 123 (2): 229—43.
  26. Sonnenborg F A., Andersen O. K., Arendt-Nielsen L. Modular organization of excitatory reflex receptive fields elicited by electrical stimulation of the foot sole in man. Clin. Neurophysiol. 2000; 111: 2160—9.
  27. Sterr A., Conforto A. B. Plastisity of adult sensorimotor system in severe brain infarcts: challenges and opportunities. Neural. Plast. 2012. doi.10.1155/2012/970136.
  28. Suminski A. J., Tkach D. C., Fagg A. H. et al. Incorporating feedback from multiple sensory modalities enhances brain-machine interface control. J. Neurosci. 2010; 30 (50): 16 777—87.
  29. Tecchio F., Zappasodi F., Melgari J. M. et al. Sensory-motor interaction in primary hand cortical areas: a magnetoencephalography assessment. Neuroscience. 2006; 141 (1): 533—42.
  30. Xerri C., Merzenich M. M., Peterson B. E. et al. Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. J. Neurophysiol. 1998; 79: 2119—48.
  31. White L. E., Andrews T. J., Hulette C. et al. Structure of the human sensorimotor system. Cerebral Cortex. 1997; 7: 31—47.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Эко-Вектор", 2013


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».