Optimization of transformation conditions by electroporation for Mycobacterium abscessus
- Autores: Zakharieva E.V.1, Martini B.A.1, Salina E.G.1
-
Afiliações:
- Bach Institute of Biochemistry, the Research Center of Biotechnology of the Russian Academy of Sciences
- Edição: Volume 61, Nº 5 (2025)
- Páginas: 487-493
- Seção: Articles
- URL: https://bakhtiniada.ru/0555-1099/article/view/353895
- DOI: https://doi.org/10.7868/S3034574Х25050059
- ID: 353895
Citar
Resumo
Palavras-chave
Sobre autores
E. Zakharieva
Bach Institute of Biochemistry, the Research Center of Biotechnology of the Russian Academy of SciencesMoscow, 119071 Russia
B. Martini
Bach Institute of Biochemistry, the Research Center of Biotechnology of the Russian Academy of SciencesMoscow, 119071 Russia
E. Salina
Bach Institute of Biochemistry, the Research Center of Biotechnology of the Russian Academy of Sciences
Email: elenasalina@yandex.ru
Moscow, 119071 Russia
Bibliografia
- Degiacomi G ., Sammartino J . C ., Chiarelli L . R ., Ri abova O ., Makarov V ., Pasca M . R . // Int . J . Mol . Sci . 2019. V. 20. № 23. P. 5868. https://doi.org/10.3390/ijms20235868
- To K., Cao R., Yegiazaryan A., Owens J., Venketara man V. // J. Clin. Med. 2020. V. 9. № 8. P. 2541. https ://doi.org/10.3390/jcm9082541
- Honda J.R., Virdi R., Chan E.D. // Front. Microbiol. 2018. V. 9. P. 2029. https://doi.org/10.3389/fmicb.2018.02029
- Schiff H.F., Jones S., Achaiah A., Pereira A., Stait G., Green B . // Sci. Rep. 2019. V. 9. № 1. P. 1730. https://doi.org/10.1038/s41598-018-37350-8
- Griffith D.E., Aksamit T., Brown-Elliott B.A., Catanza-ro A., Daley C., Gordin F. et al. // Am. J. Respir. Crit. Care Med. 2007. V. 175. № 4. P. 367–416. https://doi.org/10.1164/rccm.200604-571ST
- Brown-Elliott B.A., Wallace R.J. // Clin. Microbiol. Rev. 2002. V. 15. № 4. P. 716–746. https://doi.org/10.1128/CMR.15.4.716-746.2002
- Falkinham J.O. // Clin. Chest Med. 2015. V. 36. № 1. P. 35–41. https://doi.org/10.1016/j.ccm.2014.10.003
- Zwietering M.H., Jongenburger I., Rombouts F.M., Van’t Riet K. // Appl. Environ. Microbiol. 1990. V. 56. № 6. P. 1875–1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990
- Johansen M.D., Herrmann J.L., Kremer L. // Nat. Rev. Microbiol. 2020. V. 18. № 7. P. 392–407. https://doi.org/10.1038/s41579-020-0331-1
- Koh W.J., Stout J.E., Yew W.W. // Int. J. Tuberc. Lung Dis. 2014. V. 18. № 10. P. 1141–1148. https://doi .org/10.5588/ijtld.14.0134
- Koh W.J., Jeon K., Lee N.Y., Kim B.J., Kook Y.H., Lee S.H. et al. // Am. J. Respir. Crit. Care Med. 2011. V. 183. № 3. P. 405–410. https://doi.org /10.1164/rccm.201003-0395OC
- Lopeman R.C., Harrison J., Desai M., Cox J.A. // Microorganisms. 2019. V. 7. № 3. P. 90. https://doi.org/10.3390/microorganisms7030090
- Gopalaswamy R., Shanmugam S., Mondal R., Subbi- an S. // J. Biomed. Sci. 2020. V. 27. № 1. P. 74. https://doi.org/10.1186/s12929-020-00667-6
- Bryant J.M., Grogono D.M., Rodriguez-Rincon D., Everall I., Brown K.P., Moreno P. et al. // Science. 2016. V. 354. № 6313. P. 751 –757. https://doi.org/10.1126/science.aaf8156
- Brown-Elliott B.A., Nash K.A., Wallace R.J. // Clin. Microbiol. Rev. 2012. V. 25. № 3. P. 545–582. https://doi.org/10.1128/CMR.05030-11
- Sharma S.K., Upadhyay V. // Indian J. Med. Res. 2020. V. 152. № 3. P. 185–226. https://doi. org/10.4103/ijmr.IJMR_902_20
- Chen J., Zhao L., Mao Y., Ye M., Guo Q., Zhang Y. et al. // Front. Microbiol. 2019. V. 10. P. 1977. https://doi.org/10.3389/fmicb.2019.01977
- Ripoll F., Pasek S., Schenowitz C., Dossat C., Barbe V., Rottman M. et al . // PLoS One. 2009. V. 4. № 6. P. e5660. https://doi.org/10.1371/journal. pone.0005660
- Jacobs W.R., Kalpana G.V., Cirillo J.D., Pascopella L., Snapper S.B., Udani R.A. et al . // Methods Enzymol. 1991. V. 204. P. 537–555. https://doi.org/10.1016/0076-6879(91)04027-L
- Mycobacteria Protocols / Eds. T.Parish, A. Kumar N.Y.: Humana Press, 2021. 736 p.
- Campo-Pérez V., Cendra M.D.M., Julián E., Tor- rents E. // N. Biotechnol. 2021. V. 63. P. 10–18. https://doi.org/10.1016/j.nbt.2021.02.003
- Medjahed H., Singh A.K. Genetic Manipulation of Mycobacterium abscessus. // Curr. Protoc. Microbiol. 2010. V. 18. № 1. P. 10D-2. https://doi.org/10.1002/9780471729259.mc10d02s18
- Stover C.K., de la Cruz V.F., Fuerst T.R., Burlein J.E., Benson L.A., Bennett L.T. et al. // Nature. 1991. V. 351. № 6326. P. 456–460. https://doi.org/10.1038/351456a0
- Kalpana G. V., Bloom B. R., Jacobs W. R. // Proc. Natl. Acad. Sci. 1991. V. 88. № 12. P. 5433–5437. https:// doi: 10.1073/pnas.88.12.5433
- Snapper S.B., Melton R.E., Mustafa S., Kieser T., Jacobs W.R. Jr // Mol. Microbiol. 1990. V. 4. № 11. P. 1911–1919. https://doi.org/10.1111/ j.1365-2958.1990.tb02040.x
- Lee S.H., Cheung M., Irani V., Carroll J.D., Inami- ne J.M., Howe W.R. et al. // Tuberculosis. 2002. V. 82. № 4–5. P. 167–174. https://doi .org/10.1054/tube.2002.0335
- Rominski A., Selchow P., Becker K., Brülle J.K., Dal Molin M., Sander P. // J. Antimicrob. Chemother. 2017. V. 72. № 8. P. 2191–2200. https://doi. org/10.1093/jac/dkx125
- Akusobi C., Benghomari B.S., Zhu J., Wolf I.D., Singhvi S., Dulberger C. L. et al. // Elife. 2022. V. 11. P. e71947. https://doi.org/10.7554/eLife.71947
- Viljoen A., Gutiérrez A.V., Dupont C., Ghigo E., Kre- mer L. // Front. Cell. Infect. Microbiol. 2018. V. 8. P. 69. https://doi.org/10.3389/fcimb.2018.00069
- Wards B.J., Collins D.M. // FEMS Microbiol. Lett. 1996. V. 145. № 1. P. 101 –105. https://doi.org/10.1111/j.1574-6968.1996.tb08563.x
- David M., Lubinsky-Mink S., Ben-Zvi A., Ulitzur S., Khun J., Suissa M. // Plasmid. 1992. V. 28. № 3. P. 267–271. https://doi.org/10.1016/0147-619X(92)90059-J
Arquivos suplementares

