Optimization of transformation conditions by electroporation for Mycobacterium abscessus

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Efficient transformation of mycobacteria, in particular M. abscessus , is significantly complicated by the specific structure of their cell wall. The most widely used and effective method of introducing plasmid and phage DNA into mycobacterial cells is electroporation. The efficiency of electroporation is significantly affected by many factors, such as the nature of the DNA, the selective marker, growth supplements, the parameters of the electrical impulse, the species and the strain of the recipient mycobacterium. Although conditions for efficient electroporation for the slow-growing pathogen M. tuberculosis and the fast-growing saprophyte M. smegmatis have been described in details, recommendations for M. abscessus are scattered and even contradictory. Here it was established that efficient transformation of M. abscessus ATCC 19977 with the replicative vector pMV261 by electroporation is possible when using a logarithmic growth phase culture in a fairly wide range of optical density values OD 600 = 0.8–4.2, while cooling has little effect on the transformation frequency. A critical parameter is the mass of the introduced DNA. It has been established that the number of transformants obtained per 1 µg of DNA increases proportionally to the square of its mass. In case of introducing less than 0.5 μ g of plasmid DNA the efficiency of electroporation is insufficient.

Sobre autores

E. Zakharieva

Bach Institute of Biochemistry, the Research Center of Biotechnology of the Russian Academy of Sciences

Moscow, 119071 Russia

B. Martini

Bach Institute of Biochemistry, the Research Center of Biotechnology of the Russian Academy of Sciences

Moscow, 119071 Russia

E. Salina

Bach Institute of Biochemistry, the Research Center of Biotechnology of the Russian Academy of Sciences

Email: elenasalina@yandex.ru
Moscow, 119071 Russia

Bibliografia

  1. Degiacomi G ., Sammartino J . C ., Chiarelli L . R ., Ri abova O ., Makarov V ., Pasca M . R . // Int . J . Mol . Sci . 2019. V. 20. № 23. P. 5868. https://doi.org/10.3390/ijms20235868
  2. To K., Cao R., Yegiazaryan A., Owens J., Venketara man V. // J. Clin. Med. 2020. V. 9. № 8. P. 2541. https ://doi.org/10.3390/jcm9082541
  3. Honda J.R., Virdi R., Chan E.D. // Front. Microbiol. 2018. V. 9. P. 2029. https://doi.org/10.3389/fmicb.2018.02029
  4. Schiff H.F., Jones S., Achaiah A., Pereira A., Stait G., Green B . // Sci. Rep. 2019. V. 9. № 1. P. 1730. https://doi.org/10.1038/s41598-018-37350-8
  5. Griffith D.E., Aksamit T., Brown-Elliott B.A., Catanza-ro A., Daley C., Gordin F. et al. // Am. J. Respir. Crit. Care Med. 2007. V. 175. № 4. P. 367–416. https://doi.org/10.1164/rccm.200604-571ST
  6. Brown-Elliott B.A., Wallace R.J. // Clin. Microbiol. Rev. 2002. V. 15. № 4. P. 716–746. https://doi.org/10.1128/CMR.15.4.716-746.2002
  7. Falkinham J.O. // Clin. Chest Med. 2015. V. 36. № 1. P. 35–41. https://doi.org/10.1016/j.ccm.2014.10.003
  8. Zwietering M.H., Jongenburger I., Rombouts F.M., Van’t Riet K. // Appl. Environ. Microbiol. 1990. V. 56. № 6. P. 1875–1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990
  9. Johansen M.D., Herrmann J.L., Kremer L. // Nat. Rev. Microbiol. 2020. V. 18. № 7. P. 392–407. https://doi.org/10.1038/s41579-020-0331-1
  10. Koh W.J., Stout J.E., Yew W.W. // Int. J. Tuberc. Lung Dis. 2014. V. 18. № 10. P. 1141–1148. https://doi .org/10.5588/ijtld.14.0134
  11. Koh W.J., Jeon K., Lee N.Y., Kim B.J., Kook Y.H., Lee S.H. et al. // Am. J. Respir. Crit. Care Med. 2011. V. 183. № 3. P. 405–410. https://doi.org /10.1164/rccm.201003-0395OC
  12. Lopeman R.C., Harrison J., Desai M., Cox J.A. // Microorganisms. 2019. V. 7. № 3. P. 90. https://doi.org/10.3390/microorganisms7030090
  13. Gopalaswamy R., Shanmugam S., Mondal R., Subbi- an S. // J. Biomed. Sci. 2020. V. 27. № 1. P. 74. https://doi.org/10.1186/s12929-020-00667-6
  14. Bryant J.M., Grogono D.M., Rodriguez-Rincon D., Everall I., Brown K.P., Moreno P. et al. // Science. 2016. V. 354. № 6313. P. 751 –757. https://doi.org/10.1126/science.aaf8156
  15. Brown-Elliott B.A., Nash K.A., Wallace R.J. // Clin. Microbiol. Rev. 2012. V. 25. № 3. P. 545–582. https://doi.org/10.1128/CMR.05030-11
  16. Sharma S.K., Upadhyay V. // Indian J. Med. Res. 2020. V. 152. № 3. P. 185–226. https://doi. org/10.4103/ijmr.IJMR_902_20
  17. Chen J., Zhao L., Mao Y., Ye M., Guo Q., Zhang Y. et al. // Front. Microbiol. 2019. V. 10. P. 1977. https://doi.org/10.3389/fmicb.2019.01977
  18. Ripoll F., Pasek S., Schenowitz C., Dossat C., Barbe V., Rottman M. et al . // PLoS One. 2009. V. 4. № 6. P. e5660. https://doi.org/10.1371/journal. pone.0005660
  19. Jacobs W.R., Kalpana G.V., Cirillo J.D., Pascopella L., Snapper S.B., Udani R.A. et al . // Methods Enzymol. 1991. V. 204. P. 537–555. https://doi.org/10.1016/0076-6879(91)04027-L
  20. Mycobacteria Protocols / Eds. T.Parish, A. Kumar N.Y.: Humana Press, 2021. 736 p.
  21. Campo-Pérez V., Cendra M.D.M., Julián E., Tor- rents E. // N. Biotechnol. 2021. V. 63. P. 10–18. https://doi.org/10.1016/j.nbt.2021.02.003
  22. Medjahed H., Singh A.K. Genetic Manipulation of Mycobacterium abscessus. // Curr. Protoc. Microbiol. 2010. V. 18. № 1. P. 10D-2. https://doi.org/10.1002/9780471729259.mc10d02s18
  23. Stover C.K., de la Cruz V.F., Fuerst T.R., Burlein J.E., Benson L.A., Bennett L.T. et al. // Nature. 1991. V. 351. № 6326. P. 456–460. https://doi.org/10.1038/351456a0
  24. Kalpana G. V., Bloom B. R., Jacobs W. R. // Proc. Natl. Acad. Sci. 1991. V. 88. № 12. P. 5433–5437. https:// doi: 10.1073/pnas.88.12.5433
  25. Snapper S.B., Melton R.E., Mustafa S., Kieser T., Jacobs W.R. Jr // Mol. Microbiol. 1990. V. 4. № 11. P. 1911–1919. https://doi.org/10.1111/ j.1365-2958.1990.tb02040.x
  26. Lee S.H., Cheung M., Irani V., Carroll J.D., Inami- ne J.M., Howe W.R. et al. // Tuberculosis. 2002. V. 82. № 4–5. P. 167–174. https://doi .org/10.1054/tube.2002.0335
  27. Rominski A., Selchow P., Becker K., Brülle J.K., Dal Molin M., Sander P. // J. Antimicrob. Chemother. 2017. V. 72. № 8. P. 2191–2200. https://doi. org/10.1093/jac/dkx125
  28. Akusobi C., Benghomari B.S., Zhu J., Wolf I.D., Singhvi S., Dulberger C. L. et al. // Elife. 2022. V. 11. P. e71947. https://doi.org/10.7554/eLife.71947
  29. Viljoen A., Gutiérrez A.V., Dupont C., Ghigo E., Kre- mer L. // Front. Cell. Infect. Microbiol. 2018. V. 8. P. 69. https://doi.org/10.3389/fcimb.2018.00069
  30. Wards B.J., Collins D.M. // FEMS Microbiol. Lett. 1996. V. 145. № 1. P. 101 –105. https://doi.org/10.1111/j.1574-6968.1996.tb08563.x
  31. David M., Lubinsky-Mink S., Ben-Zvi A., Ulitzur S., Khun J., Suissa M. // Plasmid. 1992. V. 28. № 3. P. 267–271. https://doi.org/10.1016/0147-619X(92)90059-J

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».