Probiotic properties of Lactobacillus helveticus isolated from kefir grains and feces Homo sapiens
- Authors: Savinova O.S.1, Shabaev A.V.1, Fedorova T.V.1
-
Affiliations:
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences
- Issue: Vol 61, No 4 (2025)
- Pages: 363-384
- Section: Articles
- URL: https://bakhtiniada.ru/0555-1099/article/view/353489
- DOI: https://doi.org/10.7868/S3035575
- ID: 353489
Cite item
Abstract
In the present study, a comparative analysis of the probiotic properties of L. helveticus isolates obtained from kefir grains, a complex consortium of bacteria and yeasts used in the production of kefir (strains KF4, KF5, and KF6), and mammalian feces (KF7, NK1, and H9) was performed. At the genetic level, all the studied strains had the potential to form biologically active peptides, assimilate various sugars, and exhibit antimicrobial activity, which was also confirmed in vitro .
About the authors
O. S. Savinova
Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences
Email: fedorova_tv@mail.ru
Moscow, 119071 Russia
A. V. Shabaev
Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences
Author for correspondence.
Email: fedorova_tv@mail.ru
Moscow, 119071 Russia
T. V. Fedorova
Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences
Email: fedorova_tv@mail.ru
Moscow, 119071 Russia
References
- Oberg T . S ., McMahon D . J ., Culumber M . D ., McAuliffe O ., Oberg C . J . // J . Dairy Sci . 2022. V. 105. № 4. P. 2750 – 2770. https://doi.org/10.3168/jds.2021-21138
- Chelladhurai K., Ayyash M., Turner M.S., Kamal-El- din A. // Trends Food Sci. Technol. 2023. V. 136. P. 159 – 168. https://doi.org/10.1016/j.tifs.2023.04.013
- Skrzypczak K., Gustaw W., Wasko A., Banach T. // J. Agric. Sci. Technol. A. 2020. V. 22. № 3. Р . 693–707.
- Sıçramaz H., Güven O.T., Can A., Ayar A., Gü l Y. // Curr. Res. Food Sci. 2022. V. 5. P. 1009 – 1016. https://doi.org/10.1016/j.crfs.2022.05.017
- Bahrudin M.F., Rani R.A., Tamil A.M., Mokhtar N.M., Raja Ali R.A. // Dig. Dis. Sci. 2020. V. 65. № 2. Р . 541 – 549. https://doi.org/10.1007/S10620-019-05695-3/FIGURES/5
- Kido Y., Maeno S., Tanno H., Kichise Y., Shiwa Y., Endo A. // Microb. Genom. 2021. V. 7. № 4. Article № 000560 . https://doi.org/10.1099/mgen.0.000560
- Schuster J.A., Vogel R.F., Ehrmann M.A. // FEMS Microbiol. Lett. 2020. V. 367. № 8. Р 58. https://doi.org/10.1093/FEMSLE/FNAA058
- Savinova O.S., Glazunova O.A., Moiseenko K.V., Begunova A.V., Rozhkova I.V., Fedorova T.V. // Int. J. Mol. Sci. 2021. V. 22. № 20. Article № 10999. https://doi.org/10.3390/ijms222010999
- Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E.P., Zaslavsky L. et al. // Nucleic Acids Res. 2016. V. 44. № 14. P. 6614–6624. https://doi.org/10.1093/nar/gkw569
- Siguier P. // Nucleic Acids Res. 2006. V. 34. Article № 90001. P. D32– D36. https://doi.org/10.1093/nar/gkj014
- Arndt D., Grant J.R., Marcu A., Sajed T., Pon A., Liang Y. et al. // Nucleic Acids Res. 2016. V. 44. № W1. P. W16–W21. https://doi.org/10.1093/nar/gkw387
- Carattoli A., Zankari E., García-Fernández A., Lar- sen V.M., Lund O., Villa L. et al. // Antimicrob. Agents Chemother. 2014. V. 58. № 7. P. 3895–3903. https://doi.org/10.1128/AAC.02412-14
- van Heel A.J., de Jong A., Song C., Viel J.H., Kok J., Kuipers O.P. // Nucleic Acids Res. 2018. V. 46. № W1. P. W278–W281. https://doi.org/10.1093/nar/gky383
- Adler-Nissen J. // J. Agric. Food Chem. 1979. V. 27. № 6. P. 1256–1262.
- Begunova A.V., Savinova O.S., Moiseenko K.V., Glazunova O.A., Rozhkova I.V., Fedorova T.V. // Appl. Biochem. Microbiol. 2021. V. 57. № 4. Р . 458–467. https://doi.org/ 10.1134/S0003683821040037
- De Angelis M., Calasso M., Cavallo N.M., Di Cagno R., Gobbetti M. // Proteomics. 2016. V. 16. № 6. P. 946–962. https://doi.org/10.1002/pmic.201500117
- Zhang Y., Liang X.F., He S., Feng H., Li L . // Aquaculture. 2022. V. 547 Article № 737405. ttps://doi.org/10.1016/j.aquaculture.2021.737405
- Jawan R., Abbasiliasi S., Mustafa S., Kapri M.R., Ha-lim M., Ariff A.B. // Probiotics Antimicrob. Proteins. 2021. V. 13. № 2. Р . 422 – 440. https://doi.org/10.1007/s12602-020-09690-3]
- Lv R., You L., Chen X. // Food Biosci. 2024. V. 62. Article № 105268. https://doi.org/10.1016/j.fbio.2024.105268
- Darmon E., Leach D.R.F. // Microbiol. Mol. Biol. Rev. 2014. V. 78. № 1. P. 1–39. https://doi.org/10.1128/MMBR.00035-13
- Siguier P., Gourbeyre E., Varani A., Ton-Hoang B., Chandler M. // Microbiol. Spectr. 2015. V. 3. № 2. https://doi.org/10.1128/microbiolspec.MDNA3-0030-2014
- Kaleta P., O ’Callaghan J., Fitzgerald G.F., Beresford T.P., Ross R.P. // Appl. Environ. Microbiol. 2010 . V. 76. № 1. Р . 212–220 . https://doi.org/10.1128/AEM.01845-09
- Callanan M., Kaleta P., O’Callaghan J., O ’Sullivan O., Jordan K., McAuliffe O. et al. // J. Bacteriol. 2008. V. 190. № 2. Р . 727–735. https://doi.org/10.1128/JB.01295-07
- Schmid M., Muri J., Melidis D., Varadarajan A.R., Somerville V., Wicki A. et al. // Front. Microbiol. 2018. V. 9. Article № 63. https://doi.org/10.3389/fmicb.2018.00063
- Li B., D. Jin, Evivie S.E., Li N., Yan F., Zhao L., Liu F., Huo G. // Toxins. 2017. V. 9. № 10. Article № 301. ttps://doi.org/10.3390/toxins9100301
- Fontana A., Falasconi I., Molinari P., Treu L., Basile A., Vezzi A., Campanaro S., Morelli L. // Front. Microbiol. 2019. V. 10. Article № 1380. https://doi.org/10.3389/fmicb.2019.01380
- Vandecraen J., Chandler M., Aertsen A., Van Houdt R. // Crit. Rev. Microbiol. 2017. V. 43. № 6. P. 709–730. https://doi.org/10.1080/1040841X.2017.1303661
- Guidance on the Assessment of Bacterial Susceptibility to Antimicrobials of Human and Veterinary Importance. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). // EFSA Journal. 2012. V. 10. №. 6. Article № 2740. https://doi.org/10.2903/j.efsa.2012.2740
- Guo H., Pan L., Li L., Lu J., Kwok L., Menghe B., Zhang H., Zhang W. // J. Food Sci. 2017. V. 82. № 3. https://doi.org/10.1111/1750-3841.13645
- Ammor M.S., Belén Flórez A., Mayo B. // Food Microbiol. 2007. V. 24. № 6. P. 559–570. https://doi.org/10.1016/j.fm.2006.11.001
- Егоров А . М ., Уляшова М . М ., Рубцова М . Ю . // Acta Naturae. 2018. Т. 10. № 4 (39). C . 33 –48.
- Назаров П.А., Кузнецова А. M ., Каракозова М.В. // Вестник Моского Ун-та. Сер. 16. Биология. 2022. Т . 77. № 4. C. 215–223. https://doi.org/10.55959/MSU0137-0952-16-2022-77-4-215-223
- Kaatz G.W., McAleese F., Seo S.M. // Antimicrob. Agents Chemother. 2005. V. 49. P. 1857 – 1864.
- Hrovat K., Zupančič J.Č., Seme K., Avguštin J.A. // Trop. Med. Infect. Dis. 2023. V. 8. № 5. Article № 273. https://doi.org/10.3390/tropicalmed8050273
- Moiseenko K.V., Glazunova O.A., Savinova O.S., Fedorova T.V. // Appl. Biochem. Microbiol. 2024. V. 60. № 6. P. 1223 – 1229.
- Zhang T., Pan Y., Li B., Ou J., Zhang J., Chen Y. et al. // Food Control. 2013. V. 31. № 2. P. 499 –507. https://doi.org/10.1016/j.foodcont.2012.11.015
- Saltaji S., Rué O., Sopena V., Sablé S., Tambadou F., Didelot S., Chevrot R. // Foods. 2020. V. 9. № 5. Article № 622. https://doi.org/10.3390/foods9050622
- Soltani S., Hammami R., Cotter P.D., Rebuffat S., Ben Said L., Gaudreau H. et al. // FEMS Microbiol. Rev. 2021. V. 45. № 1. https://doi.org/10.1093/femsre/fuaa039
- Sun Z., Wang X., Zhang X., Wu H., Zou Y., Li P. et al. // J. Ind. Microbiol. Biotechnol. 2018. V. 45. № 3. Р . 213 – 227. https://doi.org/10.1007/s10295-018-2008-6
- Gontijo M.T.P., de Sousa Silva J., Vidigal P.M.P., Martin J.G.P. // Int. Food Res. 2020. V. 128. Article № 108783. 10.1016/j.foodres.2019.108783' target='_blank'>https://doi.org/doi: 10.1016/j.foodres.2019.108783
- Savijoki K., Ingmer H., Varmanen P. // Appl. Microbiol. Biotechnol. 2006. V. 71. P. 394–406.
- Griffiths M.W., Tellez A.M . // Front. Microbiol. 2013. V. 4. Article № 30. https://doi.org/10.3389/fmicb.2013.00030
- Kieliszek M., Pobiega K., Piwowarek K., Kot A.M. // Molecules. 2021. V. 26. №7. Article № 1858. https://doi.org/0.3390/molecules26071858
- Lim Y.H., Foo H.L., Loh T.C., Mohamad R., Abdullah N. // J. Anim. Sci. Biotechnol . 2019. V. 10. Article № 15. https://doi.org/10.1186/s40104-019-0323-z
- Sun F., Hu Y., Yin X., Kong B., Qin L. // Process Biochem. 2020. V. 89. P. 37 – 45. https://doi.org/10.1016/j.procbio.2019.10.029
- Genay M., Sadat L., Gagnaire V., Lortal S. // Appl. Environ. Microbiol. 2009. V. 75. P. 3238 – 3249.
- Broadbent J.R., Cai H., Larsen R.L., Hughes J.E., Welker D.L., De Carvalho V.G. et al. // J. Dairy Sci. 2011. V. 94. № 9. P. 4313 – 4328. https://doi.org/10.3168/jds.2010-4068
- Zhao W., Chen Y., Sun Z., Wang J., Zhou Z., Sun T., Wang L., Chen W., Zhang H. // J. Bacteriol. 2011. V. 193. P. 2666–2667.
- Miyamoto M., Ueno H.M., Watanabe M., Tatsuma Y., Seto Y., Miyamoto T., Nakajima H . // Int. J. Food Mic-robiol. 2015. V. 197. P. 65 – 71.
- Liu Q., Wang H., Zhu W., Peng S., Zou H., Zhan g P. et al. // Int. J. Biol. Macromol. 2024. V. 276. Part 2. Article № 133958. https://10.1016/j.ijbiomac.2024.133958.
- Siezen R.J. // Anton. Leeuw. INT. J. G. 1999. V. 76. № 1–4. Р . 139 – 155.
- Smeianov V.V., Wechter P., Broadbent J.R., Hughes J.E., Rodríguez B.T., Christensen T.K. et al. // Appl. Environ. Microbiol. 2007, V. 73. № 8. https://10.1128/AEM.00005-07
- Begunova A.V., Savinova O.S., Glazunova O.A., Moiseenko K.V., Rozhkova I.V., Fedorova T.V. // Foods. 2021. V. 10. № 1. Article № 17. https://doi.org/10.3390/foods10010017
- Moiseenko K.V., Glazunova O.A., Fedorova T.V. // Foods. 2024. V. 13 . № 15. Article № 2414. https://doi.org/10.3390/foods13152414
- Gao S., Jiang Y., Zhang X., Cui S., Liu X., Zhao J. et al. // Foods. 2022. V. 11. Article № 3885. https://doi.org/10.3390/foods11233885
- Martín J.F., Liras P. // Int. J. Mol. Sci. 2021. V. 22. № 3. Article № 1129. https://doi.org/10.3390/ijms22031129
- Allenby N.E., O’Connor N., Pragai Z., Carter N.M., Miethke M., Engelmann S. // Microbiology. 2004. V. 150. P. 2619–2628 .
- Hejazian S.M., Pirmoradi S., Vahed S.Z., Roy R.K., Khatibi S.M.H. // J. Protein Chem. 2024. V. 43. P. 187–199. https://doi.org/10.1007/s10930-024-10190-4
- Xu M., Hu S., Wang Y., Wang T., Dziugan P., Zhang B., Zhao H. // Front. Microbiol. Sec. Food Microbiology. 2021. V. 12. Article № 635685. https://doi.org/10.3389/fmicb.2021.635685
- Celebioglu H.U., Svensson B . // Proteomics. 2017. V. 17. № 11. Article № 1700019. https://doi.org/10.1002/pmic.201700112
- Bagon B.B., Valeriano V.D.V., Oh J.K., Pajarillo E.A.B., Cho C.-S., Kang D.-K. // LWT. 2018. V. 93 . P. 420 – 426. https://doi.org/10.1016/j.lwt.2018.03.069
- Mazzeo M.F., Sorrentino A., Morandi S., Abouloifa H., Asehraou A., Brasca M., Siciliano R.A. // Int. J. Food Microbiol. 2025. V. 426 . Article № 110922 . https://doi.org/10.1016/j.ijfoodmicro.2024.110922
- Pérez Montoro B., Benomar N., Caballero Gómez N., Ennahar S., Horvatovich P., Knapp C.W. et al. // Food Res. Int. 2018. V. 111. P. 58 – 66. https://doi.org/10.1016/j.foodres.2018.04.072
- Lin M.-H., Liu C.-C., Lu C.-W., Shu J.-C. // BMC Microbiology. 2024. V. 24. Article № 108. https://doi.org/10.1186/s12866-024-03268-7
- Angelescu I.-R., Zamfir M., Ionetic E.-C., Grosu-Tu-dor S.-S. // Fermentation 2024. V. 10. Article № 150. https://doi.org/10.3390/fermentation10030150
- Kobatake E. , Kabuki T. // Front. Microbiol. 2019. V. 10. Article № 2414. https://doi.org/10.3389/fmicb.2019.02414.
- Prado Acosta M., Geoghegan E.M., Lepenies B., Ruzal S., Kielian M., Martinez M.G. // Interaction. Front. Mic-robiol. 2019. V. 10. Article № 810. https://doi.org/10.3389/fmicb.2019.00810
- Kim E., Lee H.G., Han S., Seo K.-H., Kim H. // J. Agric. Food Chem. 2021. V. 69. № 50. Р . 15157 – 15164. https://doi.org/10.1021/acs.jafc.1c05037.
- Alp D., Kuleaşan H., Korkut Altıntaş A. // Mol. Biol. Rep. 2020. V. 47. P. 3449 – 3457. https://doi.org/10.1007/s11033-020-05430-6
- Acosta M.P., Palomino M.M., Allievi M.C., Rivas C.S., Ruzal S.M. // Appl. Environ. Microbiol. 2008. V. 74. P. 7824–7827. https://doi.org/10.1128/AEM.01712-08
- Griffin M.E., Klupt S., Espinosa J., Hang H.C. // Cell Chem. Biol. 2023. V. 30. № 5. P. 436 – 456. https://doi.org/10.1016/j.chembiol.2022.11.001
- Genay M., Sadat L., Gagnaire V., Lortal S. // Appl . Environ. Microbiol. 2009. V. 75. № 10. P.3239 – 3249.
- Sah B.N.P., Vasiljevic T., McKechnie S., Donkor O.N. // Int. Dairy J. 2016. V. l. № 63. P. 99 –106. https://doi.org/10.1016/j.idairyj.2016.08.003
- Villegas J.M., Picariello G., Mamone G., Espeche Turbay M.B., Savoy de Giori G., Hebert E.M. // Peptidomics. 2014. V. 1. P. 22–29. https://doi.org/0.2478/ped-2014-0002
- Wakai T., Yamamoto N . // Biotechnology – Molecular Studies and Novel Applications for Improved Quality of Human Life. /Ed. Reda Helmy Sammour. 2012. Published by InTech. Croatia. P. 159 – 172.
- Ali E., Nielsen S.D., Abd-El Aal S., El-Leboudy A., Saleh E., LaPointe G. // Front. Nutr. Sec. Food Mic-robiology. 2019. V. 6. Article № 152. https://doi.org/10.3389/fnut.2019.00152
- Nongonierma A.B., FitzGerald R.J. // Trends Food Sci. Technol. 2016. V. 50. P. 26 – 43. https://doi.org/10.1016/j.tifs.2016.01.022
- Fan M., Guo T., Li W., Chen J., Li F., Wang C. et al. // Food Sci Hum Well. 2019. V. 8. № 2. P. 156 – 176.
- Miguel M., G ómez-Ruiz J.Á., Recio I., Aleixandre A. // Mol. Nutr. Food Res. 2010. V. 54. № 10. P. 1422–1427. https://doi.org/10.1002/mnfr.200900448
- Adams C., Sawh F., Green-Johnson J.M., Taggart H.J., Strap J.L. // J. Dairy Sci. 2020. V. 103. № 7. P. 5805 – 5815. https://doi.org/10.3168/jds.2019-17976
- Yamamoto N., Akino A., Takano T. // J. Dairy Sci. 1994. V. 77. P. 917 – 922.
- Miclo L., Roux E., Genay M., Brusseaux E., Poirson C., Jameh N. et al. // J. Agr. Food Chem. 2012. V. 60. P. 554–565. https://doi.org/10.1021/jf202176d
- Mahdi C., Untari H., Padaga M.C., Raharjo S.J. // Int. Food Res. J. 2018. V. 25. № 1. Р . 17–23.
- Tellez A., Corredig M., Brovko L.Y., Griffiths M.W. // J. Dairy Res. 2010. V . 77. P. 129 – 136. https://doi.org/10.1017/S002202990999046X
Supplementary files

