Self-assembly of 3d mesostructures using local ion-plasma treatment
- Authors: Babushkin A.S.1, Selyukov R.V.1, Amirov I.I.1, Naumov V.V.1, Izyumov M.O.1
-
Affiliations:
- NRC “Kurchatov institute” – Valiev IPT, Yaroslavl Branch, Russia
- Issue: Vol 54, No 3 (2025)
- Pages: 261-270
- Section: ТЕХНОЛОГИИ
- URL: https://bakhtiniada.ru/0544-1269/article/view/304938
- ID: 304938
Cite item
Abstract
The technology of self-assembly of three-dimensional cubic mesostructures is presented, based on ion-plasma action on certain local areas of flat blanks formed from Cr and Cr/SiO2 films. The driving force of self-assembly is the stress gradient arising in chromium during ion bombardment in the plasma of Ar RF induction discharge. Folding of the blank into a three-dimensional structure occurs when the elements of the blank are suspended as a result of etching of the underlying silicon.
Keywords
About the authors
A. S. Babushkin
NRC “Kurchatov institute” – Valiev IPT, Yaroslavl Branch, Russia
Email: artem.yf-ftian@mail.ru
Yaroslavl, Russia
R. V. Selyukov
NRC “Kurchatov institute” – Valiev IPT, Yaroslavl Branch, Russia
Email: artem.yf-ftian@mail.ru
Yaroslavl, Russia
I. I. Amirov
NRC “Kurchatov institute” – Valiev IPT, Yaroslavl Branch, Russia
Email: artem.yf-ftian@mail.ru
Yaroslavl, Russia
V. V. Naumov
NRC “Kurchatov institute” – Valiev IPT, Yaroslavl Branch, Russia
Email: artem.yf-ftian@mail.ru
Yaroslavl, Russia
M. O. Izyumov
NRC “Kurchatov institute” – Valiev IPT, Yaroslavl Branch, Russia
Author for correspondence.
Email: artem.yf-ftian@mail.ru
Yaroslavl, Russia
References
- Zhang Y., Zhang F., Yan Z., Ma Q., Li X., Huang Y., Rogers J.A. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials // Nature Reviews Materials. 2017. V. 2. № 4. P. 1–17. https://doi.org/10.1038/natrevmats.2017.19
- Karnaushenko D., Kang T., Bandari V.K., Zhu F., Schmidt O.G. 3D self-assembled microelectronic devices: concepts, materials, applications // Advanced Materials. 2020. V. 32. № 15. P. 1902994. https://doi.org/10.1002/adma.201902994
- Liu N. Guo H., Fu L., Kaiser S., Schweizer H., Giessen H. Three-dimensional photonic metamaterials at optical frequencies // Nature materials. 2008. V. 7. №. 1. P. 31–37. https://doi.org/10.1038/nmat2072
- Bo R., Xu S., Yang Y., Zhang Y. Mechanically-guided 3D assembly for architected flexible electronics // Chemical Reviews. 2023. V. 123. № 18. P. 11137–11189. https://doi.org/10.1021/acs.chemrev.3c00335
- Guo X., Xue Z., Zhang Y. Manufacturing of 3D multifunctional microelectronic devices: challenges and opportunities // NPG Asia Materials. 2019. V. 11. № 1. P. 29. https://doi.org/10.1038/s41427-019-0129-7
- Chen S., Chen J., Zhang X., Li Z.Y., Li J. Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with “folding” // Light: Science & Applications. 2020. V. 9. № 1. P. 75. https://doi.org/10.1038/s41377-020-0309-9
- Rogers J., Huang Y., Schmidt O.G., Gracias D.H. Origami mems and nems // Mrs Bulletin. 2016. V. 41. № 2. P. 123–129. https://doi.org/10.1557/mrs.2016.2
- Zhang Z., Tian Z., Mei Y., Di Z. Shaping and structuring 2D materials via kirigami and origami // Materials Science and Engineering: R: Reports. 2021. V. 145. P. 100621. https://doi.org/10.1016/j.mser.2021.100621
- Cho J.H., Keung M.D., Verellen N., Lagae L., Moshchalkov V.V., Van Dorpe P., Gracias D.H. Nanoscale origami for 3D optics // Small. 2011. V. 7. № 14. P. 1943–1948. https://doi.org/10.1002/smll.201100568
- Mak Y.X., Dijkshoorn A., Abayazid M. Design Methodology for a 3D Printable Multi-Degree of Freedom Soft Actuator Using Geometric Origami Patterns // Advanced Intelligent Systems. 2024. V. 6. № 6. P. 2300666. https://doi.org/10.1002/aisy.202300666
- Salerno M., Firouzeh A., Paik J. A low profile electromagnetic actuator design and model for an origami parallel platform // Journal of Mechanisms and Robotics. 2017. V. 9. № 4. P. 041005. https://doi.org/10.1115/1.4036425
- Novelino L.S., Ze Q., Wu S., Paulino G.H., Zhao R. Untethered control of functional origami microrobots with distributed actuation // Proceedings of the National Academy of Sciences. 2020. V. 117. № 39. P. 24096–24101. https://doi.org/10.1073/pnas.2013292117
- Yan W., Li S., Deguchi M., Zheng Z., Rus D., Mehta A. Origami-based integration of robots that sense, decide, and respond // Nature Communications. 2023. Т. 14. № 1. P. 1553. https://doi.org/10.1038/s41467-023-37158-9
- Xu W., Li T., Qin Z., Huang Q., Gao H., Kang K., Park J., Buehler M.J., Khurgin J.B., Gracias D.H. Reversible MoS2 origami with spatially resolved and reconfigurable photosensitivity // Nano letters. 2019. V. 19. № 11. P. 7941–7949. https://doi.org/10.1021/acs.nanolett.9b03107
- Guo X., Li H., Yeop Ahn B., Duoss E.B., Hsia K.J., Lewis J.A., Nuzzo R.G. Two-and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications // Proceedings of the National Academy of Sciences. 2009. V. 106. № 48. P. 20149–20154. https://doi.org/10.1073/pnas.0907390106
- Randhawa J.S., Gurbani S.S., Keung M.D., Demers D.P., Leahy-Hoppa M.R., Gracias D.H. Three-dimensional surface current loops in terahertz responsive microarrays // Applied Physics Letters. 2010. V. 96. № 19. https://doi.org/10.1063/1.3428657
- Yu Y., Lorenz P., Strobel C., Zajadacz J., Albert M., Zimmer K., Kirchner R. Plasmonic 3D Self-Folding Architectures via Vacuum Microforming // Small. 2022. V. 18. № 7. P. 2105843. https://doi.org/10.1002/smll.202105843
- Joung D., Nemilentsau A., Agarwal K., Dai C., Liu C., Su Q., Li J., Low T., Koester S.J., Cho J.H. Self-assembled three-dimensional graphene-based polyhedrons inducing volumetric light confinement // Nano letters. 2017. V. 17. № 3. P. 1987–1994. https://doi.org/10.1021/acs.nanolett.6b05412
- Anacleto P., Gultepe E., Gomes S., Mendes P.M., Gracias D.H. Self-folding microcube antennas for wireless power transfer in dispersive media. Technology // 2016. V. 04. № 02. P. 120–129. https://doi.org/10.1142/S2339547816500047
- McCaskill J.S., Karnaushenko D., Zhu M., Schmidt O.G. Microelectronic Morphogenesis: Smart Materials with Electronics Assembling into Artificial Organisms // Advanced Materials. 2023. V. 35. № 51. P. 2306344. https://doi.org/10.1002/adma.202306344
- Bolanos Quinones V.A.,Zhu H., Solovev A.A., Mei Y., Gracias D.H. Origami biosystems: 3D assembly methods for biomedical applications // Advanced Biosystems. 2018. V. 2. № 12. P. 1800230. https://doi.org/10.1002/adbi.201800230
- Azam A., Laflin K.E., Jamal M., Fernandes R., Gracias D.H. Self-folding micropatterned polymeric containers // Biomedical microdevices. 2011. V. 13. P. 51–58. https://doi.org/10.1007/s10544-010-9470-x
- Fernandes R., Gracias D.H. Self-folding polymeric containers for encapsulation and delivery of drugs // Advanced drug delivery reviews. 2012. V. 64. № 14. P. 1579–1589. https://doi.org/10.1016/j.addr.2012.02.012
- Cools J., Jin Q., Yoon E., Alba Burbano D., Luo Z., Cuypers D., Callewaert G., Braeken D. A micropatterned multielectrode shell for 3D spatiotemporal recording from live cells // Advanced Science. 2018. V. 5. № 4. P. 1700731. https://doi.org/10.1002/advs.201700731
- Leong T.G., Benson B.R., Call E.K., Gracias D.H. Thin film stress driven self-folding of microstructured containers // Small. 2008. V. 4. № 10. P. 1605–1609. https://doi.org/10.1002/smll.200800280
- Zhang J., Reif J., Strobel C., Chava P., Erbe A., Voigt A., Mikolajick T., Kirchner R.Dry release of MEMS origami using thin Al2O3 films for facet-based device integration // Micro and Nano Engineering. 2023. V. 19. P. 100179. https://doi.org/10.1016/j.mne.2023.100179
- Bassik N., Stern G.M., Gracias D.H. Microassembly based on hands free origami with bidirectional curvature // Applied physics letters. 2009. V. 95. № 9. https://doi.org/10.1063/1.3212896
- Liu Z., Du H., Li Z.Y., Fang N.X., Li J. Invited Article: Nano-kirigami metasurfaces by focused-ion-beam induced close-loop transformation // Apl. Photonics. 2018. V. 3. № 10. https://doi.org/10.1063/1.5043065
- Mao Y., Zheng Y., Li C., Guo L., Pan Y., Zhu R., Xu J., Zhang W., Wu W. Programmable bidirectional folding of metallic thin films for 3D chiral optical antennas // Advanced materials. 2017. V. 29. № 19. P. 1606482. https://doi.org/10.1002/adma.201606482
- Babushkin A.S., Uvarov I.V., Amirov I.I. Effect of low-energy ion-plasma treatment on residual stresses in thin chromium films // Technical Physics. 2018. V. 63. № 12. P. 1800–1807. https://doi.org/10.1134/S1063784218120228
- Babushkin A., Selyukov R., Amirov I. Effect of Ar ion-plasma treatment on residual stress in thin Cr films // Proc. of SPIE, 2019. V. 11022. P. 1102223–1. https://doi.org/10.1117/12.2521617
- Fang W. Determining mean and gradient residual stresses in thin films using micromachined cantilevers / Fang W., Wickert J.A. //Journal of Micromechanics and Microengineering. 1996. V. 6. № 3. P. 301. https://doi.org/10.1088/0960-1317/6/3/
- Selyukov R.V., Amirov I.I., and Naumov V.V. Effect of ion-plasma treatment on the phase composition and electrical resistivity of nanometer-thick tungsten films, Russ. Microelectron., 2022, vol. 51, no. 6, pp. 488–496. https://doi.org/10.1134/s1063739722700081
- Uvarov I.V., Naumov V.V., and Amirov I.I. Method of manufacture of a beam with a setted bend, RF Patent 2630528, 2017.
Supplementary files
