Мониторинг распространения вариантов SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus; Sarbecovirus) на территории Московского региона с помощью таргетного высокопроизводительного секвенирования
- Авторы: Борисова Н.И.1, Котов И.А.1,2, Колесников А.А.1, Каптелова В.В.1, Сперанская А.С.1, Кондрашева Л.Ю.1, Тиванова Е.В.1, Хафизов К.Ф.1, Акимкин В.Г.1
-
Учреждения:
- ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
- ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
- Выпуск: Том 66, № 4 (2021)
- Страницы: 269-278
- Раздел: ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ
- URL: https://bakhtiniada.ru/0507-4088/article/view/118179
- DOI: https://doi.org/10.36233/0507-4088-72
- ID: 118179
Цитировать
Аннотация
Введение. С начала пандемического распространения инфекции COVID-19, вызываемой коронавирусом SARS-CoV-2, международное научное сообщество регулярно фиксирует появление мутаций этого патогена, потенциально способных повысить его контагиозность и/или вирулентность. В частности, с конца 2020 г. в мире обнаружено несколько вызывающих озабоченность вариантов, включая альфа (B.1.1.7), бета (B.1.351), гамма (P.1) и дельта (B.1.617.2). Однако существующие механизмы поиска мутаций и выявления штаммов не всегда бывают достаточно эффективными, поскольку лишь небольшая доля получаемых от пациентов образцов возбудителя может быть исследована на наличие генетических изменений, например методом полногеномного секвенирования из-за его высокой стоимости.
Материал и методы. В исследовании применён способ таргетного высокопроизводительного секвенирования нового (следующего) поколения (next generation sequencing, NGS) наиболее значимых регионов гена, кодирующего S-гликопротеин (шиповидный, spike) вируса SARS-CoV-2, для чего разработана соответствующая праймерная панель. В среднем на платформе Illumina на 1 образец приходилось около 50 тыс. парноконцевых прочтений длиной ≥150 п.н. С помощью описанной методики нами исследованы 579 случайных образцов, полученных у проживающих в Московском регионе пациентов с новой коронавирусной инфекцией с февраля по июнь 2021 г.
Результаты. В работе продемонстрирована динамика представленности в Российской Федерации ряда штаммов нового коронавируса и нескольких его мутаций на протяжении февраля–июня 2021 г. Установлено, что штамм дельта появился на территории Москвы и Московской области в мае текущего года, а в июне стал доминирующим, частично вытеснив другие разновидности вируса.
Обсуждение. Полученные данные представляют возможность определять принадлежность образцов к упомянутым и некоторым другим штаммам, а описанный подход может быть использован для стандартизации процедуры поиска новых и существующих разновидностей SARS-CoV-2. Методика делает возможным изучение большого количества образцов в короткие сроки, позволяя получать более детальное представление об эпидемиологической ситуации в регионе.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Н. И. Борисова
ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Автор, ответственный за переписку.
Email: fake@neicon.ru
ORCID iD: 0000-0002-9672-0648
111123, Москва, Россия
РоссияИ. А. Котов
ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор); ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
Email: fake@neicon.ru
ORCID iD: 0000-0003-2416-5689
111123, Москва, Россия
141700, Долгопрудный, Россия
РоссияА. А. Колесников
ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Email: fake@neicon.ru
ORCID iD: 0000-0003-3480-953X
111123, Москва, Россия
РоссияВ. В. Каптелова
ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Email: fake@neicon.ru
ORCID iD: 0000-0003-0952-0830
111123, Москва, Россия
РоссияА. С. Сперанская
ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Email: fake@neicon.ru
ORCID iD: 0000-0001-6326-1249
111123, Москва, Россия
РоссияЛ. Ю. Кондрашева
ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Email: fake@neicon.ru
ORCID iD: 0000-0002-0147-4262
111123, Москва, Россия
РоссияЕ. В. Тиванова
ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Email: fake@neicon.ru
ORCID iD: 0000-0003-1286-2612
111123, Москва, Россия
РоссияК. Ф. Хафизов
ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Email: kkhafizov@gmail.com
ORCID iD: 0000-0001-5524-0296
Хафизов Камиль Фаридович, канд. биол. наук, руководитель научной группы разработки новых методов диагностики на основе технологий секвенирования следующего поколения отдела молекулярной диагностики и эпидемиологии.
111123, Москва, Россия
РоссияВ. Г. Акимкин
ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Email: fake@neicon.ru
ORCID iD: 0000-0003-4228-9044
111123, Москва, Россия
РоссияСписок литературы
- Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798): 270–3. https://doi.org/10.1038/s41586-020-2012-7
- COVID-19 data in motion. Available at: https://coronavirus.jhu.edu (accessed July 24, 2021).
- Chen P., Nirula A., Heller B., Gottlieb R.L., Boscia J., Morris J., et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N. Engl. J. Med. 2021; 384(3): 229–37. https://doi.org/10.1056/nejmoa2029849
- Weinreich D.M., Sivapalasingam S., Norton T., Ali S., Gao H., Bhore R., et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N. Engl. J. Med. 2021; 384(3): 238–51. https://doi.org/10.1056/nejmoa2035002
- Baden L.R., El Sahly H.M., Essink B., Kotloff K., Frey S., Novak R., et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021; 384(5): 403–16. https://doi.org/10.1056/nejmoa2035389
- Polack F.P., Thomas S.J., Kitchin N., Absalon J., Gurtman A., Lockhart S., et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020; 383(27): 2603–15. https://doi.org/10.1056/nejmoa2034577
- Jones I., Roy P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet. 2021; 397(10275): 642–3. https://doi.org/10.1016/s0140-6736(21)00191-4
- Рыжиков А.Б., Рыжиков Е.А., Богрянцева М.П., Усова С.В., Даниленко Е.Д., Нечаева Е.А., и др. Простое слепое плацебо-контролируемое рандомизированное исследование безопасности, реактогенности и иммуногенности вакцины «ЭпиВакКорона» для профилактики COVID-19 на добровольцах в возрасте 18–60 лет (фаза I–II). Инфекция и иммунитет. 2021; 11(2): 283–96. https://doi.org/10.15789/2220-7619-ASB-1699
- About Variants of the Virus that Causes COVID-19. Available at: https://www.cdc.gov/coronavirus/2019-ncov/Transmission/variant.html (accessed July 26, 2021).
- Wang W.B., Liang Y., Jin Y.Q., Zhang J., Su J.G., Li Q.M. E484K mutation in SARS-CoV-2 RBD enhances binding affinity with hACE2 but reduces interactions with neutralizing antibodies and nanobodies: binding free energy calculation studies. bioRxiv. 2021; Preprint. https://doi.org/10.1101/2021.02.17.431566
- Garcia-Beltran W.F., Lam E.C., St. Denis K., Nitido A.D., Garcia Z.H., Hauser B.M., et al. Circulating SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. medRxiv. 2021; Preprint. https://doi.org/10.1101/2021.02.14.21251704
- Liu H., Wei P., Zhang Q., Chen Z., Aviszus K., Downing W., et al. 501Y.V2 and 501Y.V3 variants of SARS-CoV-2 lose binding to bamlanivimab in vitro. MAbs. 2021; 13(1): 1919285. https://doi.org/10.1080/19420862.2021.1919285
- Yuan M., Huang D., Lee C.D., Wu N.C., Jackson A.M., Zhu X., et al. Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Science. 2021; eabh1139. https://doi.org/10.1126/science.abh1139
- Ikegame S., Siddiquey M.N.A., Hung C.-T., Haas G., Brambilla L., Oguntuyo K.Y., et al. Neutralizing activity of Sputnik V vaccine sera against SARS-CoV-2 variants. medRxiv. 2021.03.31.21254660. doi: https://doi.org/10.1101/2021.03.31.21254660
- Gard N., Buzko O., Spilman P., Niazi K., Rabizadeh S., Soon- Shiong P. Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an escape mutant bioRxiv. 2021.01.13.426558. doi: https://doi.org/10.1101/2021.01.13.426558
- Tian F., Tong B., Sun L., Shi S., Zheng B., Wang Z., et al. Mutation N501Y in RBD of spike protein strengthens the interaction between COVID-19 and its receptor ACE2. bioRxiv. 2021; Preprint. https://doi.org/10.1101/2021.02.14.431117
- Хафизов К.Ф., Петров В.В., Красовитов К.В., Золкина М.В., Акимкин В.Г. Экспресс-диагностика новой коронавирусной инфекции с помощью реакции петлевой изотермической амплификации. Вопросы вирусологии. 2021; 66(1): 17–28. https://doi.org/10.36233/0507-4088-42
- Gladkikh A., Dolgova A., Dedkov V., Sbarzaglia V., Kanaeva O., Popova A., et al. Characterization of a novel SARS-CoV-2 genetic variant with distinct spike protein mutations. Viruses. 2021; 13(6): 1029. https://doi.org/10.3390/v13061029
- Klink G.V., Safina K.R., Garushyants S.K., Moldovan M., Nabieva E., Komissarov A.B., et al. Spread of endemic SARSCoV-2 lineages in Russia. medRxiv. 2021; Preprint. https://doi.org/10.1101/2021.05.25.21257695
- Komissarov A.B., Safina K.R., Garushyants S.K., Fadeev A.V., Sergeeva M.V., Ivanova A.A., et al. Genomic epidemiology of the early stages of the SARS-CoV-2 outbreak in Russia. Nat. Commun. 2021; 12(1): 649. https://doi.org/10.1038/s41467-020-20880-z
- Long S.W., Olsen R.J., Christensen P.A., Subedi S., Olson R., Davis J.J., et al. Sequence Analysis of 20,453 Severe Acute Respiratory Syndrome Coronavirus 2 Genomes from the Houston Metropolitan Area Identifies the Emergence and Widespread Distribution of Multiple Isolates of All Major Variants of Concern. Am. J. Pathol. 2021; 191(6): 983–92. https://doi.org/10.1016/j.ajpath.2021.03.004
- Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990; 215(3): 403–10. https://doi.org/10.1016/s0022-2836(05)80360-2
- Li H., Durbin R. Fast and accurate short read alignment with Burrows– Wheeler transform. Bioinformatics. 2009; 25(14): 1754–60. https://doi.org/10.1093/bioinformatics/btp324
- Bushnell B., Rood J., Singer E. BBMerge – Accurate paired shotgun read merging via overlap. PLoS One. 2017; 12(10): e0185056. https://doi.org/10.1371/journal.pone.0185056
- Poplin R., Ruano-Rubio V., DePristo M.A., Fennell T.J., Carneiro M.O., Van der Auwera G.A., et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2018; 201178. doi: https://doi.org/10.1101/201178
- Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996; 14(1): 33–8. https://doi.org/10.1016/0263-7855(96)00018-5
- Lv Z., Deng Y.Q., Ye Q., Cao L., Sun C.Y., Fan C., et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science. 2020; 369(6510): 1505–9. https://doi.org/10.1126/science.abc5881
- Davies N.G., Abbott S., Barnard R.C., Jarvis C.I., Kucharski A.J., Munday J.D., et al. Estimated transmissibility and impact of SARSCoV-2 lineage B.1.1.7 in England. Science. 2021; 372(6538): eabg3055. https://doi.org/10.1126/science.abg3055
- Expert comment on the ‘Delta plus’ variant (B.1.617.2 with the addition of K417N mutation). Available at: https://www.sciencemediacentre.org/expert-comment-on-the-delta-plus-variant-b-1-617-2-with-theaddition-of-k417n-mutation/ (accessed July 26, 2021).
- Weekly epidemiological update on COVID-19 – 22 June 2021. Available at: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---22-june-2021 (accessed July 24, 2021).
Дополнительные файлы
