Разработка препарата для онколитической иммунотерапии на основе вируса осповакцины (Vaccinia virus, Orthopoxvirus, Chordopoxvirinae, Poxviridae) против рака молочной железы
- Авторы: Бауэр Т.В.1, Трегубчак Т.П.1, Максютов А.З.1, Колосова И.В.1, Максютов Р.А.1, Гаврилова Е.П.1
-
Учреждения:
- ФБУН «Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора
- Выпуск: Том 65, № 1 (2020)
- Страницы: 49-56
- Раздел: ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ
- URL: https://bakhtiniada.ru/0507-4088/article/view/118050
- DOI: https://doi.org/10.36233/0507-4088-2020-65-1-49-56
- ID: 118050
Цитировать
Полный текст
Аннотация
Введение. В настоящее время активно развиваются новые направления в лечении рака, одним из которых является онколитическая иммунотерапия. Этот подход заключается в использовании вирусов в качестве онкоселективных цитолитических агентов, способных стимулировать опухолеспецифический и неспецифический иммунный ответ организма.
Цель работы – получение рекомбинантного вируса осповакцины, содержащего в геноме гены, кодирующие иммуностимулирующие молекулы, и изучение его онколитических и иммуностимулирующих свойств в экспериментах in vitro и in vivo.
Материал и методы. Рекомбинантный вирус осповакцины получен с использованием метода временной доминантной селекции. Цитолитическую эффективность вируса оценивали колориметрическим методом (МТТ-тест). Иммуногенность полиэпитопной конструкции в составе вирусного генома оценивали ex vivo стимуляцией клеток цельной крови иммунизированных мышей линии BALB/c в ответ на антигены с последующим определением уровня цитокинов методом иммуноферментного анализа.
Результаты. Получен рекомбинантный вирус осповакцины L-IVP_oncoB, содержащий ген, кодирующий гранулоцитарно-макрофагальный колониестимулирующий фактор в области гена J2R, который кодирует тимидинкиназу. Кроме того, данный вирус содержит искусственно синтезированную генетическую конструкцию, кодирующую иммуноген, состоящий из эпитопов антигенов, гиперэкспрессируемых в злокачественных клетках при раке молочной железы, встроенную в область гена C11L (кодирует вирусный фактор роста). Показано, что проведённые модификации вирусного генома не оказывают влияния на ростовые характеристики вируса при культивировании на культурах клеток CV-1 и 4647, а также определена цитолитическая эффективность вируса в отношении раковых культур клеток различного генеза. В эксперименте in vivo выявлено, что полиэпитопная конструкция в составе генома L-IVP_oncoB способна инициировать изменение профиля цитокинов. Обсуждение. Полученные данные охарактеризовали L-IVP_oncoB как перспективный цитолитический и иммуностимулирующий агент и показали необходимость дальнейшего изучения его свойств в качестве средства онколитической иммунотерапии.
Заключение. Проведены основные эксперименты по оценке биологических свойств полученного L-IVP_oncoB, которые необходимы для характеризации онколитического вируса.
Полный текст
Открыть статью на сайте журналаОб авторах
Т. В. Бауэр
ФБУН «Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора
Автор, ответственный за переписку.
Email: bauer_tv@vector.nsc.ru
ORCID iD: 0000-0002-4954-9905
Бауэр Татьяна Валерьевна, аспирант, младший научный сотрудник отдела геномных исследований.
630559, р.п. Кольцово, Новосибирская область
РоссияТ. П. Трегубчак
ФБУН «Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора
Email: fake@neicon.ru
ORCID iD: 0000-0001-9608-2044
630559, р.п. Кольцово, Новосибирская область Россия
А. З. Максютов
ФБУН «Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора
Email: fake@neicon.ru
ORCID iD: 0000-0002-4027-8299
630559, р.п. Кольцово, Новосибирская область Россия
И. В. Колосова
ФБУН «Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора
Email: fake@neicon.ru
ORCID iD: 0000-0003-2317-4153
630559, р.п. Кольцово, Новосибирская область Россия
Р. А. Максютов
ФБУН «Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора
Email: fake@neicon.ru
ORCID iD: 0000-0003-1314-281X
630559, р.п. Кольцово, Новосибирская область Россия
Е. П. Гаврилова
ФБУН «Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора
Email: fake@neicon.ru
ORCID iD: 0000-0002-7118-5749
630559, р.п. Кольцово, Новосибирская область Россия
Список литературы
- Youlden D.R., Cramb S.M., Dunn N.A., Muller J.M., Pyke C.M., Baade P.D. The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality. Cancer Epidemiol. 2012; 36(3): 237-48. https://doi.org/10.1016/j.canep.2012.02.007
- Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2017. CA Cancer J. Clin. 2017; 67(1): 7-30. https://doi.org/10.3322/caac.21387
- Rouzier R., Perou C.M., Symmans W.F., Ibrahim N., Cristofanilli M., Anderson K., et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res. 2005; 11(16): 5678-85. https://doi.org/10.1158/1078-0432.CCR-04-2421
- Nixon N.A., Hannouf M.B., Verma S. A review of the value of human epidermal growth factor receptor 2 (HER2)-targeted therapies in breast cancer. Euro. J. Cancer. 2018; 89: 72-81. https://doi.org/10.1016/j.ejca.2017.10.037
- Fong P.C., Boss D.S., Yap T.A., Tutt A., Wu P., Mergui-Roelvink M., et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 2009; 361(2): 123-34. https://doi.org/10.1056/NEJMoa0900212
- Butti R., Gunasekaran V.P., Kumar T.V.S., Banerjee P., Kundu G.C. Breast cancer stem cells: Biology and therapeutic implications. Int. J. Biochem. Cell. Biol. 2019; 107: 38-52. https://doi.org/10.1016/j.biocel.2018
- Delgado-Bellido D., Serrano-Saenz S., Fernández-Cortés M., Oliver F.J. Vasculogenic mimicry signaling revisited: focus on nonvascular VE-cadherin. Mol. Cancer. 2017; 16(1): 65. https://doi.org/10.1186/s12943-017-0631-x
- Economopoulou P., Kaklamani V.G., Siziopikou K. The role of Cancer stem cells in breast Cancer initiation and progression: potential Cancer stem cell-directed therapies. Oncologist. 2012; 17(11): 1394-401. https://doi.org/10.1634/theoncologist.2012-0163
- Garber K. China approves world’s first oncolytic. J. Natl. Cancer Inst. 2006; 98(5): 298-300. https://doi.org/10.1093/jnci/djj111
- Jaunalksne I., Brokāne L., Petroška D., Rasa A., Alberts P. ECHO-7 oncolytic virus Rigvir® in an adjuvant setting for stage I uveal melanoma; A retrospective case report. Am. J. Ophthalmol. Case Rep. 2020; 17: 100615. http://doi.org/10.1016/j.ajoc.2020.100615
- Adam J., Robertson J., Donegan E., Voicechovskaja I. NICE guidance for talimogene laherparepvec for unresectable metastatic melanoma. Lancet Oncol. 2016; 17(11): 1485-6. https://doi.org/10.1016/S1470-2045(16)30489-2
- Falkner F.G., Moss B. Transient dominant selection of recombinant vaccinia viruses. J. Virol. 1990; 64(6): 3108-11.
- Cheever M.A., Allison J.P., Ferris A.S., Finn O.J., Hastings B.M., Hecht T.T., et al. The Prioritization of Cancer Antigens: A National Cancer Institute Pilot Project for the Acceleration of Translational Research. Clin. Cancer Res. 2009; 15(17): 5323-37. https://doi.org/10.1158/1078-0432.CCR-09-0737
- Schlom J. Therapeutic Cancer Vaccines: Current Status and Moving Forward. J. Natl. Cancer Inst. 2012; 104(8): 599-613. https://doi.org/10.1093/jnci/djs033
- Milani A., Sangiolo D., Aglietta M., Valabrega G. Recent advances in the development of breast cancer vaccines. Breast Cancer (Dove Med. Press). 2014; 6: 159-68. https://doi.org/10.2147/BCTT.S38428
- Thomson S.A., Khanna R., Gardner J., Burrows S.R., Coupar B., Moss D.J., et al. Minimal epitopes expressed in a recombinant polyepitope protein are processed and presented to CD8+ cytotoxic T cells: implications for vaccine design. Proc. Natl. Acad. Sci. USA. 1995; 92(13): 5845-9. https://doi.org/10.1073/pnas.92.13.5845
- Eslami N.S., Shokrgozar M.A., Mousavi A., Azadmanesh K., Nomani A., Apostolopoulos V., et al. Simultaneous immunisation with a Wilms’ tumour 1 epitope and its ubiquitin fusions results in enhanced cell mediated immunity and tumour rejection in C57BL/6 mice. Mol. Immunol. 2012; 51(3-4): 325-31. https://doi.org/10.1016/j.molimm.2012.03.033
- Seyed N., Taheri T., Vauchy C., Dosset M., Godet Y., Eslamifar A., et al. Immunogenicity Evaluation of a Rationally Designed Polytope Construct Encoding HLA-A*0201 Restricted Epitopes Derived from Leishmania major Related Proteins in HLA-A2/DR1 Transgenic Mice: Steps toward Polytope Vaccine. PLoS One. 2014; 9(10): e108848. https://doi.org/10.1371/journal.pone.0108848
- Nemec A.A., Wallace S.S., Sweasy J.B. Variant base excision repair proteins: Contributors to genomic instability. Semin. Cancer Biol. 2010; 20(5): 320-8. https://doi.org/10.1016/j.semcancer.2010.10.010
- Horii R., Akiyama F., Kasumi F., Koike M., Sakamoto G. Spontaneous healing of breast cancer. Breast Cancer. 2005; 12(2): 140-4. https://doi.org/10.2325/jbcs.12.140
- Allegrezza M.J., Conejo-Garcia J.R. Targeted Therapy and Immunosuppression in the Tumor Microenvironment. Trends Cancer. 2017; 3(1): 19-27. https://doi.org/10.1016/j.trecan.2016.11.009
- Peres L.P., da Luz F.A., Pultz B.A., Brígido P.C., de Araújo R.A., Goulart L.R. Peptide vaccines in breast cancer: The immunological basis for clinical response. Biotechnol. Adv. 2015; 33(8): 1868-77. https://doi.org/10.1016/j.biotechadv.2015.10.013
- Borsig L., Wolf M.J., Roblek M., Lorentzen A., Heikenwalder M. Inflammatory chemokines and metastasis — tracing the accessory. Oncogene. 2013; 33(25): 3217-24. https://doi.org/10.1038/onc.2013.272
- Salazar-Onfray F., López M.N., Mendoza-Naranjo A. Paradoxical effects of cytokines in tumor immune surveillance and tumor immune escape. Cytokine Growth Factor Rev. 2007; 18(1-2): 171-82. https://doi.org/10.1016/j.cytogfr.2007.01.015
- Chen Q., Daniel V., Maher D.W., Hersey P. Production of IL-10 by melanoma cells: examination of its role in immunosuppression mediated by melanoma. Int. J. Cancer. 1994; 56(5): 755-60. https://doi.org/10.1002/ijc.2910560524
- Giovarelli M., Musiani P., Modesti A., Dellabona P., Casorati G., Allione A., et al. Local release of IL-10 by transfected mouse mammary adenocarcinoma cells does not suppress but enhances antitumor reaction and elicits a strong cytotoxic lymphocyte and antibody-dependent immune memory. J. Immunol. 1995; 155(6): 3112-23.
- Chen W., Zlotnik A. IL-10: a novel cytotoxic T cell differentiation factor. J. Immunol. 1991; 147(2): 528-34.
- Kaufman H.L., Rao J.B., Irivine K.R., Bronte V., Rosenberg S.A., Restifo N.P. Interleukin-10 enhances the therapeutic effectiveness of a recombinant poxvirus-based vaccine in an experimental murine tumor model. J. Immunother. 1999; 22(6): 489-96. https://doi.org/10.1097/00002371-199911000-00003
Дополнительные файлы
