УЛК 541.6+544.1

ВЛИЯНИЕ НАНОРАЗМЕРНОГО ОКСИДНОГО НАПОЛНИТЕЛЯ НА СТРУКТУРУ И ПРОВОДИМОСТЬ $KOM\PiO3UTA (1 - x)(LiClO_4-NaClO_4)-xAl_2O_3^1$

© 2023 г. 3. Ю. Кубатаев^{а, *}, М. М. Гафуров^а, К. Ш. Рабаданов^а, А. М. Амиров^а, М. А. Ахмедов^а, М. Г. Какагасанов^а

^аДагестанский федеральный исследовательский центр РАН, АЦКП ИФ ДФИЦ РАН, Махачкала, Россия *e-mail: kzu-05@ya.ru

Поступила в редакцию 25.08.2022 г. После доработки 01.02.2023 г. Принята к публикации 06.03.2023 г.

Методами спектроскопии комбинационного рассеяния света (KPC), дифференциальной сканирующей калориметрии (ДСК) и импедансной спектроскопии исследованы физико-химические свойства эвтектической системы $78.2 \text{LiClO}_4 - 21.8 \text{NaClO}_4$ и ее гетерогенных композитов с наноразмерным порошком оксида алюминия при различных температурах, фазовых состояниях и концентрациях Al_2O_3 . Добавка Al_2O_3 приводит к увеличению ионной проводимости и уменьшению энергии активации. Методом спектроскопии KPC показано, что добавка оксида алюминия приводит к образованию аморфной фазы за счет "разрушения" кристаллической фазы перхлората натрия.

Ключевые слова: перхлорат лития, эвтектика, перхлорат натрия, композиционные твердые электролиты, оксид алюминия, спектроскопия комбинационного рассеяния света

DOI: 10.31857/S0424857023080054, EDN: XXUXJS

ВВЕДЕНИЕ

Одним из важнейших направлений ионики твердого тела является поиск новых твердотельных материалов с высокой проводимостью. В настоящее время синтезировано и исследовано много соединений, в которых ионный перенос осуществляется различными катионами и анионами [1-4]. Однако большинство твердых электролитов обладают низкой проводимостью по сравнению с жидкими электролитами. Известно, что композитные твердые электролиты на основе солей щелочных металлов и порошков оксидов характеризуются более высокой электропроводностью по сравнению с проводимостью исходной соли [5, 6]. Это обстоятельство открывает широкие технологические перспективы для синтеза новых композитных ионопроводящих систем с использованием ионных солей и оксидов различного состава, размера, условий получения и т.д. Также использование многокомпонентных эвтектических солевых систем позволяет получать относительно низкотемпературные электролиты, тем самым расширяя возможности использования композиционных электролитов [7–10]. В настоящей работе исследовалось влияние наноразмерного наполнителя Al₂O₃ на структурные и ионопроводящие особенности эвтектической смеси LiClO₄-NaClO₄ методами импедансной и колебательной спектроскопии. Исследование электропроводности композитов на основе перхлоратов щелочных металлов, наполненных нано- Al_2O_3 , показало, что добавка Al_2O_3 приводит к возрастанию проводимости. Композиты на основе перхлоратов щелочных металлов имеют высокую проводимость при температурах ниже температуры плавления солевой фазы [11]. Однако, основываясь только на данных по ионной проводимости, трудно судить о механизмах переноса заряда и структурных особенностях многокомпонентных композитов. Очевидно, для этого необходим более детальный анализ микроструктуры, динамических взаимодействий ионов, молекул и наночастиц в них. Ранее было показано [8, 10], что параллельное исследование электропроводности и колебательных спектров позволяет выявить довольно интересные корреляции между спектральными данными и электропроводностью композиционных систем. Важной особенностью спектров конденсированных сред является их чувствительность к фазовым переходам и к структурным трансформациям, проявляющимся в существенных изменениях спектральных

¹ По материалам доклада на 16-м Международном Совещании "Фундаментальные проблемы ионики твердого тела", Черноголовка, 27.06.—03.07.2022.

параметров. Поэтому исследования композитов в различных фазовых и агрегатных состояниях с привлечением спектроскопических методов, направленных на получение информации об их структуре, элементарных динамических процессах, позволят более детально выявить механизмы ионной проводимости.

Целью настоящей работы является исследование структурных и динамических особенностей системы 78.2LiClO_4 — 21.8NaClO_4 , "наполненной" порошком оксида алюминия, направленное на получение детальной информации о микроструктуре, характере межчастичных динамических взаимодействий в таких системах при различных температурах и концентрациях нанопорошка Al_2O_3 .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза композитов $(1-x)(78.2 \text{LiClO}_4-21.8 \text{NaClO}_4)$ — $x \text{Al}_2 \text{O}_3$ были использованы: перхлораты лития и натрия (Sigma-Aldrich), нанокристаллический γ -Al $_2 \text{O}_3 (99\%$, "ABCR") с величиной удельной поверхности $120 \text{ m}^2/\text{г}$ и размером частиц 20 нм и α -Al $_2 \text{O}_3 (99\%$, "ABCR", размер частиц 150 нм). Исходные соли лития и натрия сушили в вакууме при 150°C в течение не менее 24 ч.

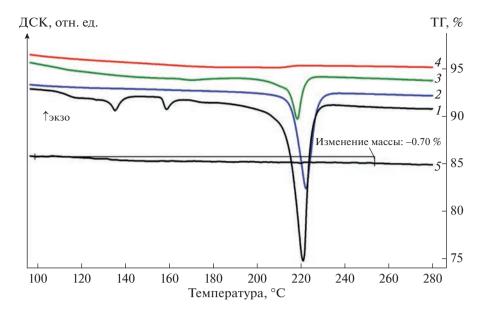
В качестве солевой фазы композита была выбрана смесь эвтектического состава $78.2 \text{LiClO}_4-21.8 \text{NaClO}_4$ (соотношения взяты в мольных процентах). Для удаления адсорбированной воды порошки оксида алюминия предварительно прокаливали в течение 2 ч при температуре 500° С. Для приготовления композитов готовую эвтектическую смесь вместе с оксидом нагревали до 250° С, затем тщательно перемешивали при этой температуре в инертной атмосфере. Температура плавления чистой эвтектической смеси LiClO_4 -NaClO $_4$ $T_{\text{пл}} = 220^{\circ}$ С. После остывания полученный композит измельчали в агатовой ступке и запаивали в ампулы из пирекса. Все работы проводились в сухом перчаточном боксе.

Измерения электропроводности проводили по двухэлектродной схеме на импедансометре RLC Е7-20 в диапазоне частот 20 Гц-1 МГц. Значения проводимости рассчитывали на основе анализа их частотных зависимостей с помощью метода комплексного импеданса. Температуру системы измеряли термопарой хромель-алюмель и поддерживали с точностью ± 1 °С. Для изучения характеристик импеданса и удельной ионной проводимости образцов, предварительно высушенные порошки бинарной соли LiClO₄-NaClO₄ и композита $(1 - x)(\text{LiClO}_4 - \text{NaClO}_4) - x\text{Al}_2\text{O}_3$ прессовали в форме цилиндрических брикетов (диаметром 13 мм и толщиной 2 мм) при одном и том же давлении 400 Бар/см². Полученные образцы хранились в сухом боксе в атмосфере аргона.

При измерении электропроводности учитывали сопротивление электродов и подводящих проводов. Все исследования проводили в атмосфере сухого аргона.

Для регистрации спектров (**KPC**) использовали конфокальный **KP**-микроскоп Senterra ("Брукер", Германия). Технические характеристики конфокального **KP** спектрометра-микроскопа SENTERRA-785: лазер 532 нм (мощность — до 20 мВт); спектральный диапазон — $50-1600 \text{ cm}^{-1}$; разрешение — 2 cm^{-1} ; используемый объектив микроскопа — $10 \times$; время на регистрацию одного спектра — до 10 мин.

Спектры КР образцов в диапазоне температур 20—320°С регистрировали с использованием специально сконструированной нагревательной приставки [12].


Термический анализ образцов проводили методами термогравиметрии ($T\Gamma$) и дифференциальной сканирующей калориметрии (JCK) на приборе синхронного термического анализа STA 449 F3 Jupiter ("NETZSCH") при скорости нагрева 10° C/мин в атмосфере аргона в платиновых тиглях. Обработка данных и интегрирование пиков проводились с помощью встроенных прикладных программ фирмы "NETZSCH". Температуры фазовых переходов определены по началу пика. Масса навесок 12 ± 2 мг. Разрешение весов 1 мкг. Калибровка температуры и чувствительности производилась по стандартным веществам. Точность измерения температуры составляет $\pm1.5^{\circ}$ C, энтальпии $-\pm3\%$.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

При нагревании эвтектической смеси солей состава $78.2 \text{LiClO}_4 - 21.8 \text{NaClO}_4$ (рис. 1) на ДСК-кривой наблюдаются три эндотермических эффекта: при 132.8 и 156.9°C и плавление при 214.3°C . Энтальпия плавления составила 145.6 Дж/г. Дополнительно провели термогравиметрический анализ, который показал потери массы меньше 1%, поэтому наличие воды в системе исключено (ДСК-анализ проводился несколько раз).

Как видно из рис. 1, добавки оксида алюминия оказывают существенное влияние на фазовые переходы в солевой матрице $LiClO_4$ – $NaClO_4$. Влияние оксидного наполнителя на фазовые переходы ранее было отмечено для других композитов "соль—оксид" [13–15].

Для композита $0.5(\text{LiClO}_4-\text{NaClO}_4)_{\text{эвт}}-0.5\gamma-\text{Al}_2\text{O}_3$ наблюдается термический эффект при температуре 164.8°C , связанный с фазовым переходом между различными кристаллическими модификациями, и термический эффект плавления солевой матрицы при 214.8°C . При большем содержании оксида алюминия (0.7 мольной доли) прак-

Рис. 1. Кривые ДСК LiClO₄—NaClO₄ (\it{I}) и композитов 0.5(LiClO₄—NaClO₄) -0.5α -Al₂O₃ ($\it{2}$), 0.5(LiClO₄—NaClO₄) -0.5γ -Al₂O₃ ($\it{3}$), 0.3(LiClO₄—NaClO₄) -0.7γ -Al₂O₃ ($\it{4}$). TГА (LiClO₄—NaClO₄) $_{\rm 3BT}$ ($\it{5}$).

тически не регистрируются фазовые переходы, включая и фазовый переход плавления; заметен лишь незначительный перегиб на кривой ДСК при 211.8° С.

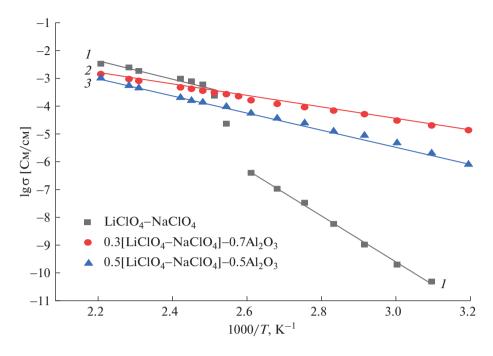
Сравнивая влияние Al_2O_3 разной модификации с одинаковым мольным содержанием (0.5), нужно отметить, что в отличие от γ -модификации, α - Al_2O_3 практически не влияет на энтальпию плавления солевой матрицы (табл. 1). Для композита с α - Al_2O_3 регистрируется небольшое увеличение температуры плавления (LiClO₄—NaClO₄) авт.

Для композита $0.5(\text{LiClO}_4-\text{NaClO}_4)_{\text{эвт}}-0.5\gamma-\text{Al}_2\text{O}_3$ энтальпия плавления составила 53.8~Дж/г. Если считать кристалличность солевой компоненты как отношение энтальпии плавления солевой матрицы в композите к энтальпии плавления чистой эвтектики $\text{LiClO}_4-\text{NaClO}_4$, то доля кристалличности составила 37.0%. Уменьшение энтальпии плавления может быть связано с различными факторами, в частности с аморфизацией, нарушением структурного соответствия между кри-

Таблица 1. Энтальпия фазового перехода (плавления) (LiClO₄—NaClO₄)_{эвт} в композитах 0.5(LiClO₄—NaClO₄)_{эвт}—0.5(α , γ)-Al₂O₃ (в случае композитов энтальпия приводится только на массу (LiClO₄—NaClO₄)_{эвт})

Состав	H, Дж/г
78.2LiClO ₄ -21.8NaClO ₄	145.6
$0.5(\text{LiClO}_4 - \text{NaClO}_4)_{_{\text{9BT}}} - 0.5\gamma\text{-Al}_2\text{O}_3$	53.8
$0.5(\text{LiClO}_4\text{-NaClO}_4)_{_{\text{9BT}}}0.5\alpha\text{-Al}_2\text{O}_3$	144.1

сталлическими решетками контактирующих фаз солей, уменьшением кристалличности солей, разупорядочением солевой подрешетки композита, стабилизацией высокотемпературной фазы перхлората натрия.

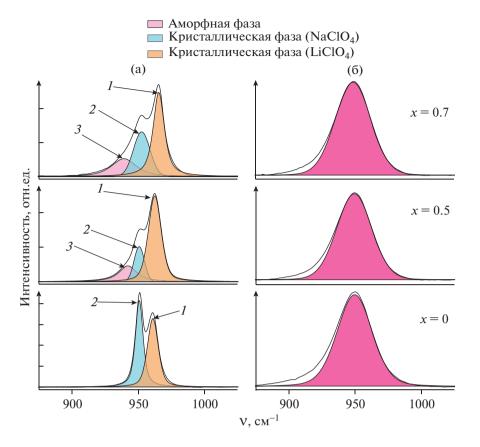

Дополнительно был проведен термогравиметрический анализ, который показал, что при нагреве образца до 280°С уменьшение массы не превышает 1%, поэтому влияние воды в системе практически исключено (ДСК-анализ проводился несколько раз).

Таким образом, установлено, что γ - Al_2O_3 в композитах (LiClO₄—NaClO₄) $_{\rm эвт}$ - Al_2O_3 значительно сильнее влияет на энтальпию плавления эвтектики, чем α - Al_2O_3 .

На рис. 2 представлены зависимости удельной электропроводности в логарифмической шкале от обратной температуры образцов ($LiClO_4$ — $NaClO_4$)_{эвт}— γ - Al_2O_3 .

Как видно из рисунка, чистая эвтектическая система (${\rm LiClO_4-NaClO_4}$)_{эвт} представлена двумя прямолинейными участками. Линейные температурные участки при 50-110 и 130-180°C подчиняются уравнению Аррениуса, что указывает на прыжковый механизм переноса ионов ${\rm Li^+}$ и ${\rm Na^+}$. При температурах более 180°C происходит неконтролируемое изменение геометрии образца таблетки (переход из твердого в жидкое состояние), в связи с чем дальнейшее измерение достоверных значений удельной ионной проводимости не представлялось возможным.

Наиболее примечательными являются результаты температурной зависимости проводимости,


Рис. 2. Зависимость удельной ионной проводимости от температуры в композитах $(1 - x)(\text{LiClO}_4 - \text{NaClO}_4) - x(\gamma - \text{Al}_2\text{O}_3), 1 - x = 0; 2 - x = 0.7; 3 - x = 0.5.$

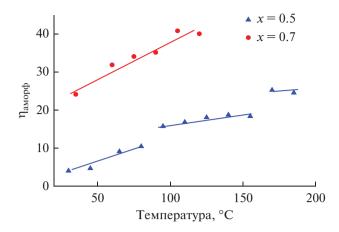
полученные в системе $LiClO_4$ – $NaClO_4$ в присутствии наполнителя Al_2O_3 , и характеризующиеся плавным участком фазового перехода. Максимальные значения удельной ионной проводимости наблюдаются в системе $LiClO_4$ – $NaClO_4$ с концентрацией x=0.7 наноразмерного γ - Al_2O_3 . Приведенные значения (табл. 2) также подтверждают, что наиболее оптимальные значения энергии активации ($E_{\rm akt}$), ионной проводимости (σ) и предэкспонициального множителя (A) в интервале температуры (50–180°C) наблюдаются для композита $0.3(LiClO_4$ – $NaClO_4)_{\rm akt}$ – 0.7γ - Al_2O_3 .

Переходя к обсуждению результатов спектроскопических измерений, отметим, что для получения сведений о динамических взаимодействиях в исследуемых системах, мы в качестве информационных зондов использовали внутримолекулярные колебания перхлорат аниона, в частности анализ формы контура колебательной моды v_1 , отвечающей полносимметричному валентному колебанию аниона ClO_4^- [16]. При комнатной температуре для $LiClO_4$ — $NaClO_4$ (рис. 3) контур колебательной моды v_1 характеризуется дублетной структурой, с положениями максимумов,

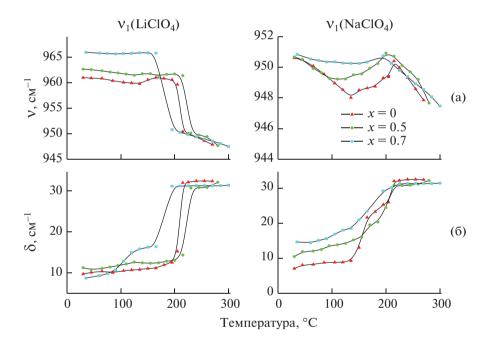
Таблица 2. Значения коэффициентов уравнения Аррениуса для исследуемых систем в интервале температур 323—453 K

Образец	Линейные температ. участки	Интервал температур, К	6, См/см (при <i>T</i> , K)	$E_{ m a\kappa}$, кДж/моль	$\lg A$
LiClO ₄ -NaClO ₄	I	323–383	$4.86 \times 10^{-11} $ (323)	158.25 ± 0.18	1.18
	II	393–453	2.39×10^{-4} (403)	63.34 ± 1.23	0.69
0.5(LiClO ₄ -NaClO ₄)-0.5Al ₂ O ₃	I	323–453	$5.77 \times 10^{-6} $ (323)	57.19 ± 0.05	0.55
0.3(LiClO ₄ -NaClO ₄)-0.7Al ₂ O ₃	I	323–453	$2.01 \times 10^{-5} $ (323)	39.01 ± 0.08	0.21

Рис. 3. Колебательные спектры композитов $(1-x)(\text{LiClO}_4-\text{NaClO}_4)-x(\gamma-\text{Al}_2\text{O}_3)$ в области полносимметричного валентного колебания перхлорат-иона и результаты их разложения на компоненты с частотами $v_1 \sim 963$ (*I*), ~ 952 (*2*) и ~ 938 см $^{-1}$ (*3*). *T*, $^{\circ}$ C: 25 (a), 250 (б).


близкими к максимумам в спектрах индивидуальных солей перхлората натрия и перхлората лития, т.е. эвтектика представляет собой смесь поликристаллов индивидуальных солей. Добавка γ -Al₂O₃ приводит к появлению дополнительной широкой моды со стороны меньших волновых чисел с частотой колебания (938 см⁻¹). Интегральная интенсивность данной полосы увеличивается с ростом концентрации оксида. Наряду с этим заметно уменьшение относительной колебательной полосы ν_1 кристаллической фазы перхлората натрия (рис. 3а). Выше температуры плавления (рис. 3б), форма контура колебательной полосы ν_1 перхлорат-иона в композитах по сравнению с солевой эвтектикой не меняется.

Что касается соотношения интегральных интенсивностей компонент контуров полос в спектрах KP, приписываемых колебаниям ClO_4 в подсистемах $LiClO_4$ и $NaClO_4$, то оно слабо подвержено влиянию температуры. Иными словами, появление в спектре KP композита дополнительной компоненты с максимумом при ~938 см $^{-1}$, на наш взгляд, связано с локализацией части перхлорат ионов в приповерхностной области нано-


частиц оксида алюминия с образованием аморфной фазы. Примечательно отметить, что контур колебательной полосы $V_1(A)$ перхлорат-аниона в NaClO₄ в композите распадается на две компоненты с максимумами при ~950 и 938 см⁻¹, а отношение их интегральных интенсивностей по мере увеличения температуры вплоть до температуры плавления эвтектики меняется в пользу роста интенсивности низкочастотной компоненты (рис. 4). Это означает, что процесс разупорядочения молекулярных анионов (или аморфизация солевой фазы композита) преимущественно происходит за счет NaClO₄.

Данный вывод также подтверждается температурно-фазовыми изменениями спектральных параметров (частоты и полуширины) колебательной полосы V_1 перхлоратаниона.

Как видно из рис. 5, эти параметры испытывают скачкообразное изменение при фазовом переходе кристалл—расплав. А добавка оксида алюминия приводит к сглаживанию фазового перехода при температуре 130° С спектроскопических параметров контура колебаний v_1 , относящихся к перхлорату натрия.

Рис. 4. Температурная зависимость относительной интегральной интенсивности аморфной фазы ($\eta_{\text{аморф}}$) в области колебания ν_1 перхлорат-аниона в композите $(1-x)(\text{LiClO}_4-\text{NaClO}_4)_{\text{ЭВТ}}-x(\gamma-\text{Al}_2\text{O}_3)$ при x=0.5 и 0.7; ($\eta_{\text{аморф}}=I_{\text{аморф}}/(I_{\text{аморф}}+I_{\text{NaClO}_4}+I_{\text{LiClO}_4})$).

Рис. 5. Зависимости частот v и полуширин δ компонент $v_1 \sim 963$ см $^{-1}$ (a) и $v_1 \sim 952$ см $^{-1}$ (б) в композитах (1-x)(LiClO₄-NaClO₄)-xAl₂O₃ от температуры.

ЗАКЛЮЧЕНИЕ

Таким образом, показано, что при температурах 130° С для системы (LiClO₄—NaClO₄)_{эвт} наблюдается заметный скачок проводимости (рис. 2) и существенные изменения частот и полуширин полос в спектре KPC в частотной области, отвечающей колебанию $v_1(A)$ перхлоратаниона в NaClO₄ (рис. 5). Наблюдаемый на кривых ДСК эндотермический эффект при 130° С можно связать с началом процессов разупорядо-

чения (аморфизации), имеющими место на контактной границе микрокристаллических перхлоратов лития и натрия исследуемой системы. Причем, в силу большей поляризующей способности катиона лития, эти эффекты наиболее отчетливо должны проявляться на внутренних колебаниях перхлорат-аниона в NaClO₄. Иными словами, наблюдаемые на кривых ДСК эндотермические эффекты при ~130 и ~165°С могут быть связаны с началом процесса аморфизации и, соответственно, возникновением предплавильной области в

межзеренных границах эвтектической системы $(\text{LiClO}_4-\text{NaClO}_4)_{\text{эвт}}.$

Также показано, что при добавке наноразмерного оксида алюминия происходит существенное изменение микроструктуры композита $(1-x)(\text{LiClO}_4-\text{NaClO}_4)_{_{3\text{BT}}}-x\text{Al}_2\text{O}_3$ по сравнению с бинарной солевой системой. Максимальные значения удельной ионной проводимости 2.01×10^{-5} См/см (при 323 K) наблюдаются в композите $0.3(\text{LiClO}_4-\text{NaClO}_4)_{_{3\text{BT}}}-0.7\gamma\text{-Al}_2\text{O}_3$. Выявлено, что в композите наличие нано-Al $_2\text{O}_3$ приводит к появлению в системе аморфной фазы перхлората натрия.

БЛАГОДАРНОСТИ

Работа выполнена на оборудовании Аналитического центра коллективного пользования ДФИЦ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Duan, Y., Bai, X., Yu, T., Rong, Y., Wu, Y., and Wang, X., Research progress and prospect in typical sulfide solid-state electrolytes, *J. Energy Storage*, 2022, vol. 55, p. 105382. https://doi.org/10.1016/j.est.2022.105382
- 2. Han, L., Lehmann, M.L., Zhu, J., Liu, T., Zhou, Z., Tang, X., Heish, C.Te, Sokolov, A.P., Cao, P., Chen, X.C., and Saito, T., Recent Developments and Challenges in Hybrid Solid Electrolytes for Lithium-Ion Batteries, *Frontiers in Energy Research*, 2020, p. 1. https://doi.org/10.3389/fenrg.2020.00202
- 3. Пантюхина, М.И., Плаксин, С.В., Саетова, Н.С., Расковалов, А.А. Новый твердый электролит $\text{Li}_{8-x}\text{Zr}_{1-x}\text{Ta}_x\text{O}_6$ (x=0-0.5) для литиевых источников тока. Электрохимия. 2019. Т. 55. С. 1543. [Pantyukhina, M.I., Plaksin, S.V., Saetova, N.S., and Raskovalov, A.A., New solid elerolyte $\text{Li}_{8-x}\text{Zr}_{1-x}\text{Ta}_x\text{O}_6$ (x=0-0.5) for lithium power sources, Russ. J. Electrochem., 2019, vol. 55, p. 1269.]
- Joos, M., Conrad, M., Moudrakovski, I., Terban, M.W., Rad, A., Kaghazchi, P., Merkle, R., Dinnebier, R.E., Schleid, T., and Maier, J., Ion Transport Mechanism in Anhydrous Lithium Thiocyanate LiSCN Part II: Frequency Dependence and Slow Jump Relaxation, *Phys. Chem. Chem. Phys.*, 2022, vol. 24, p. 20198. https://doi.org/10.1039/D2CP01837C
- Liang, C.C., Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes, *J. Electrochem. Soc.*, 1973, vol. 120, p. 1289.
- Uvarov, N.F, Ulihin, A.S., and Mateyshina, Y.G., Nanocomposite Alkali-Ion Solid Electrolytes, Advanced

- Nanomaterials for Catalysis and Energy, 2022, p. 393. https://doi.org/10.1039/D2CP01837C
- 7. Chen, L., Cros, C., Castagnet, R., and Hagenmuller, P., Electrical conductivity enhancement in an eutectic system containing dispersed second phase particles, *Solid State Ionics*, 1988, vol. 31, p. 209.
- 8. Рабаданов, К.Ш., Гафуров, М.М., Кубатаев, З.Ю., Амиров, А.М., Ахмедов, М.А., Шабанов, Н.С., Атаев, М.Б. Ионная проводимость и колебательные спектры композитов LiNO₃—KNO₃ + Al₂O₃. Электрохимия. 2019. Т. 55. С. 750. [Rabadanov, K.S., Gafurov, M.M., Kubataev, Z.Y., Amirov, A.M., Akhmedov, M.A., Shabanov, N.S., and Ataev, M.B., Ion Conductivity and vibrational spectra of LiNO₃—KNO₃ + Al₂O₃ composites, Russ. J. Electrochem., 2019, vol. 55, p. 573.]
- Закирьянова, И.Д., Николаева, Е.В., Бове, А.Л., Антонов. Б.Д. Электропроводность и спектры комбинационного рассеяния света дисперсных систем α-Al₂O₃-расплав Li₂CO₃-Na₂CO₃-K₂CO₃-NaCl. *Pacnлавы*. 2018. № 1. С. 80. https://doi.org/10.7868/S0235010618010097
- 10. Gafurov, M.M., Rabadanov, K.S., Ataev, M.B., Amirov, A.M., Akhmedov, M.A., Shabanov, N.S., Kubataev, Z.Y., and Rabadanova, D.I., Research of the structure and dynamic interactions of particles in the $\text{Li}_{0.42}\text{K}_{0.58}\text{NO}_3-\text{R}$ ($\text{R}=\alpha\text{-Al}_2\text{O}_3, \gamma\text{-Al}_2\text{O}_3, \text{SiO}_2$) and (LiNO₃–LiClO₄)– γ -Al₂O₃ composites in various temperature condition and phase states, *Spectrochim. Acta*, 2021, vol. 257, p. 119765.
- Ulihin, A.S., Uvarov, N.F., Mateyshina, Y.G., Brezhneva, L.I., and Matvienko, A.A., Composite solid electrolytes LiClO₄-Al₂O₃, *Solid State Ionics*, 2006, vol. 177, p. 2787.
- Gafurov, M.M. and Rabadanov, K.S., High-temperature vibrational spectroscopy of molten electrolytes, Applied Spectroscopy Reviews, 2022, p. 1. https://doi.org/10.1080/05704928.2022.2048305
- Sulaiman, M., Che Su, N., and Mohamed, N., Sol-gel synthesis and characterization of β-MgSO₄:Mg(NO₃)₂—MgO composite solid electrolyte, *Ionics*, 2017, vol. 23, p. 443. https://doi.org/10.1007/s11581-016-1854-3
- Wu, Cheng-Wei, Ren, Xue, Zhou, Wu-Xing, Xie, Guofeng, and Zhang, Gang, Thermal stability and thermal conductivity of solid electrolytes, *APL Materials*, 2022, vol. 10, p. 040902. https://doi.org/10.1063/5.0089891
- Amirov, A.M., Suleymanov, S.I., Gafurov, M.M., Ataev, M.B., and Rabadanov, K.S. Study of the MNO₃-Al₂O₃ nanocomposites by differential scanning calorimetry, *J. Thermal Analysis and Calorimetry*, 2022, vol. 147, p. 9283. https://doi.org/10.1007/s10973-022-11256-0
- 16. Накамото, К. *ИК-спектры и спектры КР неорганических и координационных соединений* (пер. с англ.). М.: Мир, 1991. С. 536. [Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. *Wiley-Interscience*, 1991. p. 536.]