О местоположении геометрических медиан треугольников

Обложка

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Геометрическая медиана является естественным пространственным обобщением статистической медианы одномерной выборки. Задача вычисления медианы конечного набора точек (выборки) на прямой не вызывает затруднений, но при переходе на плоскость или в пространства высшей размерности, где отсутствует естественный линейный порядок точек, такие затруднения возникают. Дело в том, что, например, для многомерной выборки среднее значение, как и на прямой, вычисляется взятием арифметического среднего. Однако для геометрической медианы подобная аналитическая формула принципиально отсутствует. Тем более такие формулы неизвестны для геометрических медиан непрерывных объектов, расположенных на плоскости или в пространстве. В связи с этим возникает естественный вопрос об аналитических оценках местоположения геометрических медиан. В работе приведены решения двух простейших задач такого рода. А именно – решение задачи об оценке местоположения геометрической медианы периметра треугольника и решение аналогичной задачи о геометрической медиане треугольной области. Для обеих задач получены точные оценки аффинного типа.

Полный текст

Доступ закрыт

Об авторах

П. А. Панов

НИУ «Высшая школа экономики»

Автор, ответственный за переписку.
Email: ppanov@hse.ru
Россия, Москва

Список литературы

  1. Балк М. Б., Болтянский В. Г. (1987). Геометрия масс. М.: Наука. [Balk M. B., Boltyansky V. G. (1987). Geometry of masses. M.: Nauka (in Russian).]
  2. Панов П. А. (2017). Равновесные расположения центров благ по городу // Журнал Новой экономической ассоциации. № 1. С. 28–42. [Panov P. A. (2017). Nash equilibria in the facility location problem with externalities. Journal of the New Economic Association, 1 (33), 28–42 (in Russian).]
  3. Панов П. А. (2021). О геометрических медианах треугольников. Режим доступа: https://arxiv.org/ftp/arxiv/papers/2007/2007.14231.pdf [Panov P. A. (2021). On geometric medians of triangles. Available at: https://arxiv.org/ftp/arxiv/papers/2007/2007.14231.pdf (in Russian).]
  4. Bajaj C. (1988). The algebraic degree of geometric optimization problems. Discrete and Computational Geometry, 3 (2), 177–191.
  5. Behrend K. (2014). Introduction to algebraic stacks. In: Moduli Spaces. L. Brambila-Paz, P. Newstead, R. P. Thomas, O. García-Prada (eds.). London Mathematical Society Lecture Notes, 411. Cambridge: Cambridge Univ. Press., 1–131.
  6. Fekete S. P., Mitchell J. S.B., Beurer K. (2005). On the continuous Fermat-Weber problem. Operations Research, 53 (1), 61– 76. doi: 10.1287/opre.1040.0137. S2CID1121
  7. Mallows C. (1991). Another comment on O’Cinneide. The American Statistician, 45, 3, 257. doi: 10.1080/00031305.1991.10475815
  8. Murray A. T. (2020). Location theory. In: International encyclopedia of human geography. 2nd ed. A. Kobayashi (ed.). Oxford: Elsevier. doi: 10.1016/B978-0-08-102295-5.10104-0
  9. Piché R. (2012). Random vectors and random sequences. Saarbrücken: Lambert Academic Publishing. ISBN: 978-3659211966
  10. Stewart I. (2017). Why do all triangles form a triangle? American Mathematical Monthly, 124, 1, 70–73. doi: 10.4169/amer.math.monthly.124.1.70
  11. Yao J., Zhang X., Murray A. T. (2019). Location optimization of urban fire stations: Access and service coverage. Computers, Environment and Urban Systems, 73, 184–190. doi: 10.1016/j.compenvurbsys.2018.10.006

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».