КОНЕЧНЫЕ ГРАНИЦЫ, ПОЛОЖЕНИЯ РАВНОВЕСИЯ И БИФУРКАЦИИ В ТРЁХМЕРНОЙ МОДЕЛИ РАКА
- Авторы: Крищенко А.П1
-
Учреждения:
- Московский государственный технический университет имени Н.Э. Баумана
- Выпуск: Том 61, № 11 (2025)
- Страницы: 1460-1473
- Раздел: ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
- URL: https://bakhtiniada.ru/0374-0641/article/view/352955
- DOI: https://doi.org/10.7868/S3034503025110029
- ID: 352955
Цитировать
Аннотация
Об авторах
А. П Крищенко
Московский государственный технический университет имени Н.Э. Баумана
Email: yapkri@yandex.ru
Список литературы
- de Pillis, L.G. The dynamics of an optimally controlled tumor model: a case study / L.G. de Pillis, A. Radunskaya // Math. Comput. Model. — 2003. — V. 37. — P. 1221–1244.
- Itik, M. Chaos in a three-dimensional cancer model / M. Itik, S.P. Bank // Intern. J. of Bifurcation and Chaos. — 2010. — V. 20, № 1. — P. 71–79.
- Starkov, K.E. On the global dynamics of one cancer tumour growth model / K.E. Starkov, A.P. Krishchenko // Commun. Nonlin. Sci. Numer. Simul. — 2014. — V. 19, № 5. — P. 1486–1495.
- Bounding the dynamics of a chaotic-cancer mathematical model / P.A. Valle, L.N. Coria, D. Gamboa, C. Plata // Math. Problems in Engineering. — 2018. — Art. 9787015.
- Routes to chaos in a three-dimensional cancer model / E. Karatetskaia, V. Koryakin, K. Soldatkin, A. Kazakov // Regul. Chaotic Dyn. — 2024. — V. 29, № 5. — P. 777–793.
- Шильников, Л.П. Об одном случае существования счётного множества периодических движений / Л.П. Шильников // Докл. АН СССР. — 1965. — Т. 160, № 3. — C. 558–561.
- Шильников, Л.П. Теория бифуркаций динамических систем и опасные границы / Л.П. Шильников // Докл. АН СССР. — 1975. — Т. 224, № 5. — C. 1046–1049.
- Крищенко, А.П. Локализация инвариантных комплектов динамических систем / А.П. Крищенко // Дифференц. уравнения. — 2005. — Т. 41, № 12. — C. 1597–1604.
- Крищенко, А.П. Итерационные последовательности метода локализации / А.П. Крищенко // Дифференц. уравнения. — 2024. — Т. 60, № 11. — C. 1566–1570.
- Khalil, H.K. Nonlinear Systems / H.K. Khalil. — 3rd ed. — Upper Saddle River : Prentice Hall, 2002. — 750 p.
- Арнольд, В.И. Обыкновенные дифференциальные уравнения / В.И. Арнольд. — М. : МЦНМО, 2012. — 341 c.
Дополнительные файлы


