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On exchange-correlation energy in DFT scenarios
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Motivated by the considerable importance of material properties in modern condensed matter physics re-
search, and using techniques of the Ne-electron systems in terms of the electron density nσe (r) needed to obtain
the ground-state energy Ee0 in Density Functional theory scenarios, we approach the exchange-correlation
energy Exc [nσe(r)] by considering the interelectronic position corrections ∆r
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corresponding to the spin and the Coulomb correlation effects, respectively,
through the electron-electron potential energy. Exploiting such corrections, we get approximate expressions for
the exchange Ex [nσe] and the correlation Ec [nσe] functional energies which could be interpreted in terms of
magnetic and electric dipole potential energies associated with the charge density nσe (r) described by inverse-
square potential behaviors. Based on these arguments, we expect that such obtained exchange-correlation
functional energy could be considered in the Local Density Approximation functional as an extension to frame
such interelectronic effects.
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In this work, motivated by the considerable im-

portance of material properties in modern condensed

matter physics research, and using techniques of the

Ne-electron systems in terms of the electron density

nσe (r) needed to obtain the ground-state energy Ee0 in

density functional theory scenarios [1–5], we approach

the exchange-correlation energy Exc [nσe(r)]. For that,

we first present the study of the total electronic en-

ergy of many-electron Ne systems from the generalized

Schrödinger equation of the many-electron wavefucn-

tion Ψσe (xi), discuss the early attempts used to over-

come the computational problem by means of the in-

troduction of the electron density nσe (r) reducing the

dimensionality of the system, and reconsider the Den-

sity Functional Theory (DFT) computational scheme

of the Ne-electron systems using the electron density

nσe (r) for getting the ground state energy Ee0 [5–8].

Then, by considering the interelectronic position cor-

rections ∆r↑↑,↑↓x = λx
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corresponding to the spin and

the Coulomb correlation effects, respectively, through

the electron-electron potential energy. Employing such

corrections, we get approximate expressions for the ex-

change Ex [nσe] and the correlation Ec [nσe] functional

energies. By making contact with some known physical

energy behaviour systems, a close inspection shows that
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these obtained energies could be interpreted in terms

of magnetic and electric dipole potential energies as-

sociated with the charge density nσe (r) described by

inverse-square potential behaviors [9, 10]. Such inverse-

square potential have been largely investigated in dif-

ferent physical scales including high energy physics and

related topics [11–13]. Based on these arguments, we ex-

pect that such obtained exchange-correlation functional

energy could be considered in the Local Density Ap-

proximation functional as an extension to frame such in-

terelectronic effects [14, 15]. Particularly, we think that

these dipole-like potentials should be implemented in

the generalized Schrödinger equation in the DFT frame-

work providing interelectronic interaction energy cor-

rections as well as possible new gates to explore other

physical features.
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