The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}//(\mathbb C^{\ast})^n$ of the Grassmann manifolds $G_{n,2}$

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The complex Grassmann manifolds Gn,k appear as one of the fundamental objects in developing an interaction between algebraic geometry and algebraic topology. The case k=2 is of special interest on its own as the manifolds Gn,2 have several remarkable properties which distinguish them from the Gn,k for k>2.
In our paper we obtain results which, essentially using the specifics of the Grassmann manifolds Gn,2, develop connections between algebraic geometry and equivariant topology. They are related to well-known problems of the canonical action of the algebraic torus (C)n on Gn,2 and the induced action of the compact torus Tn(C)n.
Kapranov proved that the Deligne-Mumford-Grothendieck-Knudsen compactification ¯M(0,n) of the space of n-pointed rational stable curves can be realized as the Chow quotient Gn,2//(C)n. In recent papers of the authors a constructive description of the orbit space Gn,2/Tn was obtained. In deducing this result the notions of the complex of admissible polytopes and the universal space of parameters Fn for the Tn-action on Gn,2 were of essential use.
Using the techniques of wonderful compactification, in this paper an explicit construction of the space Fn is presented. In combination with Keel's description of ¯M(0,n), this construction enabled one to obtain an explicit diffeomorphism between Fn and ¯M(0,n). In this way, we give a description of Gn,2//(C)n as the space Fn with a structure described in terms of admissible polytopes Pσ and spaces Fσ.

作者简介

Victor Buchstaber

Steklov Mathematical Institute of Russian Academy of Sciences; HSE University

编辑信件的主要联系方式.
Email: buchstab@mi-ras.ru
Doctor of physico-mathematical sciences, Professor

Svjetlana Terzić;

University of Montenegro

Email: sterzic@rc.pmf.cg.ac.yu
Candidate of physico-mathematical sciences

参考

  1. V. M. Buchstaber, S. Terzic, “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $mathbb CP^5$”, Mosc. Math. J., 16:2 (2016), 237–273
  2. V. M. Buchstaber, S. Terzic, “Toric topology of the complex Grassmann manifolds”, Mosc. Math. J., 19:3 (2019), 397–463
  3. В. М. Бухштабер, С. Терзич, “Основания $(2n, k)$-многообразий”, Матем. сб., 210:4 (2019), 41–86
  4. V. M. Buchstaber, A. P. Veselov, Chern–Dold character in complex cobordisms and theta divisors
  5. В. М. Бухштабер, С. Терзич, “Разрешение особенностей пространств орбит $G_{n,2}/T^n$”, Труды МИАН, 317, Торическая топология действия групп, геометрия и комбинаторика, Ч. 1 (2022), 27–63
  6. T. Coates, A. Givental, “Quantum cobordisms and formal group laws”, The unity of mathematics, Progr. Math., 244, Birkhäuser Boston, Inc., Boston, MA, 2006, 155–171
  7. C. De Concini, C. Procesi, “Complete symmetric varieties”, Invariant theory (Montecatini, 1982), Lecture Notes in Math., 996, Springer-Verlag, Berlin, 1983, 1–44
  8. C. De Concini, C. Procesi, “Wonderful models of subspace arrangements”, Selecta Math. (N.S.), 1:3 (1995), 459–494
  9. C. De Concini, C. Procesi, “Hyperplane arrangements and holonomy equations”, Selecta Math. (N.S.), 1:3 (1995), 495–535
  10. C. De Concini, G. Gaiffi, “Projective wonderful models for toric arrangements”, Adv. Math., 327 (2018), 390–409
  11. C. De Concini, G. Gaiffi, “Cohomology rings of compactifications of toric arrangements”, Algebr. Geom. Topol., 19:1 (2019), 503–532
  12. C. De Concini, G. Gaiffi, O. Papini, “On projective wonderful models for toric arrangements and their cohomology”, Eur. J. Math., 6:3 (2020), 790–816
  13. W. Fulton, R. MacPherson, “A compactification of configuration space”, Ann. of Math. (2), 139:1 (1994), 183–225
  14. I. M. Gelfand, R. D. MacPherson, “Geometry in Grassmannians and a generalization of the dilogarithm”, Adv. Math., 44:3 (1982), 279–312
  15. И. М. Гельфанд, В. В. Серганова, “Комбинаторные геометрии и страты тора на однородных компактных многообразиях”, УМН, 42:2(254) (1987), 107–134
  16. I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp.
  17. M. Goresky, R. MacPherson, “On the topology of algebraic torus actions”, Algebraic groups (Utrecht, 1986), Lecture Notes in Math., 1271, Springer-Verlag, Berlin, 1987, 73–90
  18. Yi Hu, “Topological aspects of Chow quotients”, J. Differential Geom., 69:3 (2005), 399–440
  19. M. M. Kapranov, “Chow quotients of Grassmannians. I”, I. M. Gel'fand seminar, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 29–110
  20. M. M. Kapranov, “Veronese curves and Grothendieck–Knudsen moduli space $overline{M}_(0,n)$”, J. Alebraic Geom., 2:2 (1993), 239–262
  21. М. Э. Казарян, С. К. Ландо, В. В. Прасолов, Алгебраические кривые. По направлению к пространствам модулей, МЦНМО, М., 2019, 272 с.
  22. S. Keel, “Intersection theory of moduli space of stable $N$-pointed curves of genus zero”, Trans. Amer. Math. Soc., 330:2 (1992), 545–574
  23. S. Keel, J. Tevelev, “Geometry of Chow quotients of Grassmannians”, Duke Math. J., 134:2 (2006), 259–311
  24. S. Keel, J. McKernan, “Contractible extremal rays on $overline{M}_(0,n)$”, Handbook of moduli, v. 2, Adv. Lect. Math. (ALM), 25, Int. Press, Somerville, MA; Higher Education Press, Beijing, 2013, 115–130
  25. N. Klemyatin, Universal spaces of parameters for complex Grassmann manifolds $G_{q+1,2}$
  26. J. M. Landsberg, L. Manivel, “The projective geometry of Freudenthal's magic square”, J. Agebra, 239:2 (2001), 477–512
  27. Li Li, “Wonderful compactification of an arrangement of subvarieties”, Michigan Math. J., 58:2 (2009), 535–563
  28. D. Luna, Th. Vust, “Plongements d'espaces homogènes”, Comment. Math. Helv., 58:2 (1983), 186–245
  29. D. McDuff, D. Salamon, $J$-holomorphic curves and symplectic topology, Amer. Math. Soc. Colloq. Publ., 52, Amer. Math. Soc., Providence, RI, 2004, xii+669 pp.
  30. H. Süss, “Toric topology of the Grassmannian of planes in $mathbb{C}^{5}$ and the del Pezzo surface of degree $5$”, Mosc. Math. J., 21:3 (2021), 639–652
  31. D. A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia Math. Sci., 138, Invariant Theory Algebr. Transform. Groups, 8, Springer, Heidelberg, 2011, xxii+253 pp.
  32. Ф. Л. Зак, “Многообразия Севери”, Матем. сб., 126(168):1 (1985), 115–132

补充文件

附件文件
动作
1. JATS XML

版权所有 © Бухштабер В.M., Терзич С., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».