The orbit spaces $G_{n,2}/T^n$ and the Chow quotients $G_{n,2}//(\mathbb C^{\ast})^n$ of the Grassmann manifolds $G_{n,2}$
- 作者: Buchstaber V.M.1,2, Terzić; S.3
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- HSE University
- University of Montenegro
- 期: 卷 214, 编号 12 (2023)
- 页面: 46-75
- 栏目: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/147928
- DOI: https://doi.org/10.4213/sm9964
- ID: 147928
如何引用文章
详细
The complex Grassmann manifolds Gn,k appear as one of the fundamental objects in developing an interaction between algebraic geometry and algebraic topology. The case k=2 is of special interest on its own as the manifolds Gn,2 have several remarkable properties which distinguish them from the Gn,k for k>2.
In our paper we obtain results which, essentially using the specifics of the Grassmann manifolds Gn,2, develop connections between algebraic geometry and equivariant topology. They are related to well-known problems of the canonical action of the algebraic torus (C∗)n on Gn,2 and the induced action of the compact torus Tn⊂(C∗)n.
Kapranov proved that the Deligne-Mumford-Grothendieck-Knudsen compactification ¯M(0,n) of the space of n-pointed rational stable curves can be realized as the Chow quotient Gn,2//(C∗)n. In recent papers of the authors a constructive description of the orbit space Gn,2/Tn was obtained. In deducing this result the notions of the complex of admissible polytopes and the universal space of parameters Fn for the Tn-action on Gn,2 were of essential use.
Using the techniques of wonderful compactification, in this paper an explicit construction of the space Fn is presented. In combination with Keel's description of ¯M(0,n), this construction enabled one to obtain an explicit diffeomorphism between Fn and ¯M(0,n). In this way, we give a description of Gn,2//(C∗)n as the space Fn with a structure described in terms of admissible polytopes Pσ and spaces Fσ.
作者简介
Victor Buchstaber
Steklov Mathematical Institute of Russian Academy of Sciences; HSE University
编辑信件的主要联系方式.
Email: buchstab@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
Svjetlana Terzić;
University of Montenegro
Email: sterzic@rc.pmf.cg.ac.yu
Candidate of physico-mathematical sciences
参考
- V. M. Buchstaber, S. Terzic, “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $mathbb CP^5$”, Mosc. Math. J., 16:2 (2016), 237–273
- V. M. Buchstaber, S. Terzic, “Toric topology of the complex Grassmann manifolds”, Mosc. Math. J., 19:3 (2019), 397–463
- В. М. Бухштабер, С. Терзич, “Основания $(2n, k)$-многообразий”, Матем. сб., 210:4 (2019), 41–86
- V. M. Buchstaber, A. P. Veselov, Chern–Dold character in complex cobordisms and theta divisors
- В. М. Бухштабер, С. Терзич, “Разрешение особенностей пространств орбит $G_{n,2}/T^n$”, Труды МИАН, 317, Торическая топология действия групп, геометрия и комбинаторика, Ч. 1 (2022), 27–63
- T. Coates, A. Givental, “Quantum cobordisms and formal group laws”, The unity of mathematics, Progr. Math., 244, Birkhäuser Boston, Inc., Boston, MA, 2006, 155–171
- C. De Concini, C. Procesi, “Complete symmetric varieties”, Invariant theory (Montecatini, 1982), Lecture Notes in Math., 996, Springer-Verlag, Berlin, 1983, 1–44
- C. De Concini, C. Procesi, “Wonderful models of subspace arrangements”, Selecta Math. (N.S.), 1:3 (1995), 459–494
- C. De Concini, C. Procesi, “Hyperplane arrangements and holonomy equations”, Selecta Math. (N.S.), 1:3 (1995), 495–535
- C. De Concini, G. Gaiffi, “Projective wonderful models for toric arrangements”, Adv. Math., 327 (2018), 390–409
- C. De Concini, G. Gaiffi, “Cohomology rings of compactifications of toric arrangements”, Algebr. Geom. Topol., 19:1 (2019), 503–532
- C. De Concini, G. Gaiffi, O. Papini, “On projective wonderful models for toric arrangements and their cohomology”, Eur. J. Math., 6:3 (2020), 790–816
- W. Fulton, R. MacPherson, “A compactification of configuration space”, Ann. of Math. (2), 139:1 (1994), 183–225
- I. M. Gelfand, R. D. MacPherson, “Geometry in Grassmannians and a generalization of the dilogarithm”, Adv. Math., 44:3 (1982), 279–312
- И. М. Гельфанд, В. В. Серганова, “Комбинаторные геометрии и страты тора на однородных компактных многообразиях”, УМН, 42:2(254) (1987), 107–134
- I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp.
- M. Goresky, R. MacPherson, “On the topology of algebraic torus actions”, Algebraic groups (Utrecht, 1986), Lecture Notes in Math., 1271, Springer-Verlag, Berlin, 1987, 73–90
- Yi Hu, “Topological aspects of Chow quotients”, J. Differential Geom., 69:3 (2005), 399–440
- M. M. Kapranov, “Chow quotients of Grassmannians. I”, I. M. Gel'fand seminar, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 29–110
- M. M. Kapranov, “Veronese curves and Grothendieck–Knudsen moduli space $overline{M}_(0,n)$”, J. Alebraic Geom., 2:2 (1993), 239–262
- М. Э. Казарян, С. К. Ландо, В. В. Прасолов, Алгебраические кривые. По направлению к пространствам модулей, МЦНМО, М., 2019, 272 с.
- S. Keel, “Intersection theory of moduli space of stable $N$-pointed curves of genus zero”, Trans. Amer. Math. Soc., 330:2 (1992), 545–574
- S. Keel, J. Tevelev, “Geometry of Chow quotients of Grassmannians”, Duke Math. J., 134:2 (2006), 259–311
- S. Keel, J. McKernan, “Contractible extremal rays on $overline{M}_(0,n)$”, Handbook of moduli, v. 2, Adv. Lect. Math. (ALM), 25, Int. Press, Somerville, MA; Higher Education Press, Beijing, 2013, 115–130
- N. Klemyatin, Universal spaces of parameters for complex Grassmann manifolds $G_{q+1,2}$
- J. M. Landsberg, L. Manivel, “The projective geometry of Freudenthal's magic square”, J. Agebra, 239:2 (2001), 477–512
- Li Li, “Wonderful compactification of an arrangement of subvarieties”, Michigan Math. J., 58:2 (2009), 535–563
- D. Luna, Th. Vust, “Plongements d'espaces homogènes”, Comment. Math. Helv., 58:2 (1983), 186–245
- D. McDuff, D. Salamon, $J$-holomorphic curves and symplectic topology, Amer. Math. Soc. Colloq. Publ., 52, Amer. Math. Soc., Providence, RI, 2004, xii+669 pp.
- H. Süss, “Toric topology of the Grassmannian of planes in $mathbb{C}^{5}$ and the del Pezzo surface of degree $5$”, Mosc. Math. J., 21:3 (2021), 639–652
- D. A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia Math. Sci., 138, Invariant Theory Algebr. Transform. Groups, 8, Springer, Heidelberg, 2011, xxii+253 pp.
- Ф. Л. Зак, “Многообразия Севери”, Матем. сб., 126(168):1 (1985), 115–132
补充文件
