


Том 215, № 2 (2024)
Стабильные расслоения и проблема Римана–Гильберта на римановой поверхности
Аннотация
Работа посвящена исследованию голоморфных векторных расслоений с логарифмическими связностями на компактной римановой поверхности и применению полученных результатов к исследованию вопроса положительной разрешимости проблемы Римана–Гильберта на римановой поверхности. Мы приводим пример представления фундаментальной группы римановой поверхности с четырьмя выколотыми точками, который не может быть реализован как представление монодромии логарифмической связности с четырьмя особыми точками ни в каком полустабильном расслоении. Для произвольной пары – расслоение и логарифмическая связность в нем – мы доказываем оценку на наклоны присоединенных факторов фильтрации Хардера–Нарасимхана. Кроме этого, мы представляем некоторые результаты о реализуемости представления в качестве прямого слагаемого в представлении монодромии логарифмической связности в полустабильном расслоении нулевой степени.Библиография: 9 названий.



Об изометрических вложениях призм
Аннотация
Для произвольной выпуклой многогранной призмы строится семейство ее изометрических вложений, удовлетворяющих условиям, аналогичным тем, которые А. В. Погорелов накладывал на изометрию кругового цилиндра и называл условиями “опирания на окружности по краям”.Библиография: 4 названия.



Круговой критерий и критерий Цыпкина для систем с несколькими нелинейностями без использования $S$-процедуры
Аннотация
В задаче абсолютной устойчивости систем Лурье с несколькими нелинейностями круговой критерий (для систем с непрерывным временем) и критерий Цыпкина (для систем с дискретным временем) получены с использованием теоремы о свертывании и без использования $S$-процедуры. Доказаны две теоремы, которые используют теорему о свертывании и позволяют существенно уменьшать размерность связанных систем линейных матричных неравенств. Библиография: 19 названий.



Точная область однолистного покрытия на классе голоморфных отображений круга в себя с внутренней и граничной неподвижными точками
Аннотация
Изучается класс голоморфных отображений единичного круга в себя с внутренней и граничной неподвижными точками. Найдена точная область однолистного покрытия на классе таких функций в зависимости от значения угловой производной в граничной неподвижной точке и расположения внутренней неподвижной точки. Этот результат можно рассматривать как уточнение теоремы Ландау о круге однолистного покрытия на классе ограниченных голоморфных функций с заданным значением производной во внутренней неподвижной точке. Библиография: 30 названий.



О квазиобщих накрытиях проективной плоскости
Аннотация
Теорема Кизини для почти общих накрытий проективной плоскости, доказательство которой опубликовано в статье “Теорема Кизини для почти общих накрытий проективной плоскости” (Матем. сб., 213:3 (2022), 64–80), обобщена на случай квазиобщих накрытий проективной плоскости, разветвленных в кривых с особыми точками $\mathrm{ADE}$-типа.Библиография: 18 названий.



Базисность полиномов Лежандра в пространстве Лебега с переменным показателем
Аннотация
И. И. Шарапудинов доказал базисность системы полиномов Лежандра в пространствах Лебега с переменным показателем $p(x)$, когда $p(x)>1$ удовлетворяет условию Дини–Липшица и является константой вблизи концов отрезка ортогональности. В настоящей работе базисность указанной системы доказана без требования постоянства на концах переменного показателя.Библиография: 9 названий.



О емкостях, соизмеримых с гармоническими
Аннотация
Пусть $\mathcal L$ – однородный эллиптический дифференциальный оператор второго порядка в $\mathbb R^N$, $N\geqslant 3$, с постоянными комплексными коэффициентами. В терминах емкостей $\gamma_{\mathcal L}$ описываются устранимые особенности $\mathrm L^{\infty}$-ограниченных решений уравнений $\mathcal Lf=0$, $\gamma_{\Delta}$ – это классические гармонические емкости теории потенциала. Доказывается соизмеримость $\gamma_{\mathcal L}$ и $\gamma_{\Delta}$ при всех $\mathcal L$ и соответствующих $N$. В доказательстве используются некоторые идеи Х. Толсы. Даются различные следствия указанной соизмеримости, в частности, критерии равномерной приближаемости функций решениями уравнений $\mathcal Lf=0$ формулируются в терминах гармонических емкостей. Библиография: 19 названий.



Скорость сходимости пороговых жадных алгоритмов
Аннотация
В этой работе изучается скорость сходимости классического порогового жадного алгоритма по базисам. Мы оцениваем ошибку приближения произведением двух норм: нормы $f$ и $A_1$-нормы $f$. Мы получаем результаты для жадных базисов, безусловных базисов и квазижадных базисов. В частности, мы доказываем, что наши оценки для тригонометрического базиса и базиса Хаара оптимальны.Библиография: 16 названий.


