О свойствах и погрешности параболического и гиперболического 2-го порядка возмущений симметричной гиперболической системы 1-го порядка

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучаются задачи Коши для многомерной симметричной линейной гиперболической системы уравнений 1-го порядка с переменными коэффициентами и ее сингулярных возмущений – сильно параболической и гиперболической 2-го порядка систем уравнений с малым параметром $\tau>0$ при вторых производных по $x$ и $t$. Доказываются существование и единственность слабых решений всех трех систем и равномерные по $\tau$ оценки решений систем с возмущениями. Даются оценки разности решений исходной системы и систем с возмущениями, в том числе в норме $C(0,T;L^2(\mathbb{R}^n))$ порядка $O(\tau^{\alpha/2})$ при начальной функции $\mathbf w_0$ из пространств Соболева $H^\alpha(\mathbb{R}^n)$ для $\alpha=1,2$ и пространств Никольского $H_2^{\alpha}(\mathbb{R}^n)$ для $0<\alpha<2$, $\alpha\neq 1$ и соответствующих условиях на свободный член системы 1-го порядка. При $\alpha=1/2$ охватывается широкий класс разрывных $\mathbf w_0$. Выводятся также оценки производных любого порядка по $x$ как решений, так и их разностей порядка $O(\tau^{\alpha/2})$. Указывается приложение результатов к линеаризованной на постоянном решении системе уравнений газовой динамики 1-го порядка и ее возмущениям – линеаризованным параболической и гиперболической 2-го порядка квазигазодинамическим системам уравнений. Библиография: 34 названия.

Об авторах

Александр Анатольевич Злотник

Национальный исследовательский университет "Высшая школа экономики"; Институт прикладной математики им. М.В. Келдыша Российской академии наук

Автор, ответственный за переписку.
Email: alexander.zlotnik@gmail.com
доктор физико-математических наук, профессор

Борис Николаевич Четверушкин

Институт прикладной математики им. М.В. Келдыша Российской академии наук

Email: office@keldysh.ru
доктор физико-математических наук, профессор

Список литературы

  1. Б. Н. Четверушкин, Кинетические схемы и квазигазодинамическая система уравнений, МАКС Пресс, М., 2004, 328 с.
  2. Т. Г. Елизарова, Квазигазодинамические уравнения и методы расчета вязких течений, Научный мир, М., 2007, 349 с.
  3. Б. Н. Четверушкин, “Гиперболическая квазигазодинамическая система”, Матем. моделирование, 30:2 (2018), 81–98
  4. Л. К. Эванс, Уравнения с частными производными, Тамара Рожковская, Новосибирск, 2003, 562 с.
  5. Дж. Коул, Методы возмущений в прикладной математике, Мир, М., 1972, 274 с.
  6. J. Genet, M. Madaune, “Singular perturbations for a class of nonlinear hyperbolic-hyperbolic problems”, J. Math. Anal. Appl., 64:1 (1978), 1–24
  7. Л. Р. Волевич, М. Г. Джавадов, “Равномерные оценки решений гиперболических уравнений с малым параметром при старших производных”, Дифференц. уравнения, 19:12 (1983), 2082–2090
  8. A. van Harten, R. R. van Hassel, “A quasi-linear, singular perturbation problem of hyperbolic type”, SIAM J. Math. Anal., 16:6 (1985), 1258–1267
  9. S. Schochet, “Hyperbolic-hyperbolic singular limits”, Comm. Partial Differential Equations, 12:6 (1987), 589–632
  10. H. O. Fattorini, “The hyperbolic singular perturbation problem: an operator theoretic approach”, J. Differential Equations, 70:1 (1987), 1–41
  11. E. M. de Jager, F. Jiang, The theory of singular perturbations, North-Holland Ser. Appl. Math. Mech., 42, North-Holland Publishing Co., Amsterdam, 1996, xii+340 pp.
  12. C. Мизохата, Теория уравнений с частными прооизводными, Мир, М., 1977, 504 с.
  13. С. К. Годунов, Уравнения математической физики, 2-е изд., испр. и доп., Наука, М., 1979, 391 с.
  14. S. Benzoni-Gavage, D. Serre, Multidimensional hyperbolic partial differential equations. First-order systems and applications, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, Oxford, 2007, xxvi+508 pp.
  15. С. М. Никольский, Приближение функций многих переменных и теоремы вложения, Наука, М., 1969, 480 с.
  16. А. А. Злотник, Б. Н. Четверушкин, “О параболичности квазигазодинамической системы уравнений, ее гиперболической 2-го порядка модификации и устойчивости малых возмущений для них”, Ж. вычисл. матем. и матем. физ., 48:3 (2008), 445–472
  17. А. А. Злотник, Б. Н. Четверушкин, “Устойчивость неявных разностных схем для линеаризованной гиперболической квазигазодинамической системы уравнений”, Дифференц. уравнения, 56:7 (2020), 936–947
  18. А. А. Злотник, Б. Н. Четверушкин, “О параболическом и гиперболическом 2-го порядка возмущениях гиперболической системы 1-го порядка”, Докл. РАН. Матем., информ., проц. упр., 506 (2022), 9–15
  19. H. O. Fattorini, “Singular perturbation and boundary layer for an abstract Cauchy problem”, J. Math. Anal. Appl., 97:2 (1983), 529–571
  20. А. З. Ишмухаметов, “Управляемость гиперболических систем при сингулярных возмущениях”, Дифференц. уравнения, 36:2 (2000), 241–250
  21. Т. Е. Моисеев, Е. Е. Мышецкая, В. Ф. Тишкин, “О близости решений невозмущенных и гиперболизованных уравнений теплопроводности для разрывных начальных данных”, Докл. РАН, 481:6 (2018), 605–609
  22. B. N. Chetverushkin, A. A. Zlotnik, “On a hyperbolic perturbation of a parabolic initial-boundary value problem”, Appl. Math. Lett., 83 (2018), 116–122
  23. О. А. Ладыженская, В. А. Солонников, Н. Н. Уральцева, Линейные и квазилинейные уравнения параболического типа, Наука, М., 1967, 736 с.
  24. О. А. Ладыженская, Краевые задачи математической физики, Наука, М., 1973, 407 с.
  25. Л. К. Эванс, Р. Ф. Гариепи, Теория меры и тонкие свойства функций, Научная книга (ИДМИ), Новосибирск, 2002, 216 с.
  26. Х. Гаевский, К. Грегер, К. Захариас, Нелинейные операторные уравнения и операторные дифференциальные уравнения, Мир, М., 1978, 336 с.
  27. А. А. Злотник, Б. Н. Четверушкин, “Спектральные условия устойчивости явной трехслойной разностной схемы для многомерного уравнения переноса с возмущениями”, Дифференц. уравнения, 57:7 (2021), 922–931
  28. Й. Берг, Й. Лефстрем, Интерполяционные пространства. Введение, Мир, M., 1980, 264 с.
  29. B. N. Chetverushkin, A. A. Zlotnik, “On some properties of multidimensional hyperbolic quasi-gasdynamic systems of equations”, Russ. J. Math. Phys., 24:3 (2017), 299–309
  30. А. А. Злотник, Проекционно-разностные методы для нестационарных задач с негладкими данными, Дисс. … канд. физ.-матем. наук, МГУ, М., 1979
  31. L. Tartar, An introduction to Sobolev spaces and interpolation spaces, Lect. Notes Unione Mat. Ital., 3, Springer, Berlin; UMI, Bologna, 2007, xxvi+218 pp.
  32. М. C. Агранович, Соболевские пространства, их обобщения и эллиптические задачи в областях с гладкой и липшицевой границей, МЦНМО, М., 2013, 378 с.
  33. A. Zlotnik, T. Lomonosov, “$L^2$-dissipativity of the linearized explicit finite-difference scheme with a kinetic regularization for 2D and 3D gas dynamics system of equations”, Appl. Math. Lett., 103 (2020), 106198, 7 pp.
  34. А. А. Злотник, А. С. Федченко, “Свойства агрегированной квазигазодинамической системы уравнений гомогенной газовой смеси”, Докл. РАН. Матем., информ., проц. упр., 501 (2021), 31–37

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Злотник А.А., Четверушкин Б.Н., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».