Первые интегралы и асимптотические траектории

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Обсуждаются связи между особыми точками автономных систем дифференциальных уравнений и критическими точками их первых интегралов. С помощью известной леммы о расщеплении вводятся локальные координаты, в которых первый интеграл имеет “канонический” вид. Эти координаты позволяют ввести в окрестности особой точки квазиоднородную структуру и доказать общие теоремы о наличии асимптотических траекторий, входящих в особую точку или выходящих из нее. Исследованы квазиоднородные укорочения исходной системы дифференциальных уравнений. Показано, что при условии изолированности особой точки квазиоднородная система будет гамильтоновой. Установлена теорема о неустойчивости равновесий общих механических систем с двумя степенями свободы, когда потенциальная энергия в положении равновесия не имеет ни максимума, ни минимума. Библиография: 21 название.

Об авторах

Валерий Васильевич Козлов

Математический институт им. В.А. Стеклова Российской академии наук

Email: kozlov@pran.ru
доктор физико-математических наук, профессор

Список литературы

  1. В. В. Козлов, “Линейные системы с квадратичным интегралом”, ПММ, 56:6 (1992), 900–906
  2. В. В. Козлов, А. А. Карапетян, “О степени устойчивости”, Дифференц. уравнения, 41:2 (2005), 186–192
  3. В. И. Арнольд, В. А. Васильев, В. В. Горюнов, О. В. Ляшко, “Особенности. I. Локальная и глобальная теория”, Динамические системы – 6, Итоги науки и техн. Сер. Соврем. пробл. матем. Фундам. направления, 6, ВИНИТИ, М., 1988, 5–250
  4. Т. Постон, И. Стюарт, Теория катастроф и ее приложения, Мир, М., 1980, 608 с.
  5. В. В. Козлов, “О неустойчивости равновесий консервативных систем при типичных вырождениях”, Дифференц. уравнения, 44:8 (2008), 1033–1040
  6. J. Williamson, “An algebraic problem involving the involutory integrals of linear dynamical systems”, Amer. J. Math., 62 (1940), 881–911
  7. H. Kocak, “Linear Hamiltonian systems are integrable with quadratics”, J. Math. Phys., 23:12 (1982), 2375–2380
  8. V. V. Kozlov, “Linear Hamiltonian systems: quadratic integrals, singular subspaces and stability”, Regul. Chaotic Dyn., 23:1 (2018), 26–46
  9. В. В. Козлов, С. Д. Фурта, Асимптотики решений сильно нелинейных систем дифференциальных уравнений, 2-е изд., НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2009, 312 с.
  10. А. М. Молчанов, “Разделение движений и асимптотические методы теории нелинейных колебаний”, Докл. АН СССР, 136:5 (1961), 1030–1033
  11. Л. Г. Хазин, Э. Э. Шноль, Устойчивость критических положений равновесия, ОНТИ НЦБИ АН СССР, Пущино, 1985, 216 с.
  12. А. Н. Кузнецов, “О существовании входящих в особую точку решений автономной системы, обладающей формальным решением”, Функц. анализ и его прилож., 23:4 (1989), 63–74
  13. В. В. Козлов, “Асимптотические решения уравнений классической механики”, ПММ, 46:4 (1982), 573–577
  14. S. Bolotin, P. Negrini, “Asymptotic solutions of Lagrangian systems with gyroscopic forces”, NoDEA Nonlinear Differential Equations Appl., 2:4 (1995), 417–444
  15. M. Brunella, “Instability of equilibria in dimension three”, Ann. Inst. Fourier (Grenoble), 48:5 (1998), 1345–1357
  16. V. V. Kozlov, D. V. Treschev, “Instability, asymptotic trajectories and dimension the phase space”, Mosc. Math. J., 18:4 (2018), 681–692
  17. В. В. Козлов, Д. В. Трещев, “О неустойчивости изолированных равновесий динамических систем с инвариантной мерой в нечетномерном пространстве”, Матем. заметки, 65:5 (1999), 674–680
  18. Л. Зигель, Ю. Мозер, Лекции по небесной механике, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 384 с.
  19. В. В. Козлов, “Гироскопическая стабилизация вырожденных равновесий и топология вещественных алгебраических многообразий”, Докл. РАН, 420:4 (2008), 447–450
  20. А. Пуанкаре, “О тернарных и кватернарных кубических формах. I”, Избранные труды, т. II, Наука, М., 1972, 819–860
  21. H. Matsumura, P. Monsky, “On the automorphisms of hypersurfaces”, J. Math. Kyoto Univ., 3:3 (1963/1964), 347–361

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Козлов В.В., 2020

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».