COEFFICIENT OF THERMAL ACCOMMODATION OF O2 MOLECULES ON PYREX IN DC DISCHARGE IN OXYGEN

Capa

Citar

Texto integral

Resumo

The radial distribution of the gas temperature in a DC glow discharge in pure oxygen in a pyrex tube was measured under various discharge modes in the pressure range 1–5 torr. The analysis of the obtained results allowed us to determine the coefficient of thermal accommodation of oxygen molecules on pyrex: 0.26 ± 0.02. The coefficient of thermal accommodation determines the spatial distribution of temperature in a plasma chemical reactor, the kinetics of reactions involving heavy particles in the discharge and the rate of plasma processing of materials.

Sobre autores

I. Ziganshin

Lomonosov Moscow State University, D.V. Skobeltsyn Scientific Research Institute of Nuclear Physics; Lomonosov Moscow State University

Email: ilyaziganshin@gmail.com
Moscow, Russia

D. Kiselevich

Lomonosov Moscow State University

Moscow, Russia

D. Lopaev

Lomonosov Moscow State University, D.V. Skobeltsyn Scientific Research Institute of Nuclear Physics

Moscow, Russia

K. Galliulin

Lomonosov Moscow State University, D.V. Skobeltsyn Scientific Research Institute of Nuclear Physics; Lomonosov Moscow State University

Moscow, Russia

A. Rakhimov

Lomonosov Moscow State University, D.V. Skobeltsyn Scientific Research Institute of Nuclear Physics; Lomonosov Moscow State University

Moscow, Russia

Bibliografia

  1. Gibson A.R., Foucher M., Marinov D., Chabert P., Gans T., Kushner M.J., and Booth J.P. // Plasma Phys Control Fusion. 2017. V. 59. 024004. https://doi.org/10.1088/1361-6587/59/2/024004
  2. Paul D., Mozetic M., Zaplotnik R., Primc G., Donlagic D., and Vesel A. // Materials. 2023. V. 16. 1774. https://doi.org/10.3390/ma16051774
  3. Booth J.P., Guaitella O., Chatterjee A., Drag C., Guerra V., Lopaev D., Zyryanov S., Rakhimova T., Voloshin D., and Mankelevich Y. // Plasma Sources Sci Technol. 2019. V. 28. 055005. https://doi.org/10.1088/1361-6595/ab13e8
  4. Li X., Abe T., and Esashi M. // Sens Actuators A Phys. 2001. V. 87. 139. https://doi.org/10.1109/MEMSYS.2000.838528
  5. Smedskjaer M.M., Youngman R.E., and Mauro J.C. // Applied Physics A. 2014. V. 116. 491. https://doi.org/10.1007/s00339-014-8396-1
  6. Li X., Abe T., and Esashi M. // Sens Actuators A Phys. 2001. V. 87. P. 139. https://doi.org/10.1109/MEMSYS.2000.838528
  7. Zyryanov S.M. and Lopaev D.V. // Plasma Physics Reports. 2007. V. 33. P. 510. https://doi.org/10.1134/S1063780X07060086
  8. Saxon R.P. and Liu B. // J Chem Phys. 1977. V. 67. P. 5432. https://doi.org/10.1063/1.434764
  9. Cauquot P., Cavadias S., and Amouroux J. // J. Thermophys Heat Trans. 1998. V. 12. P. 206. https://doi.org/10.2514/2.6323
  10. Krech R.H., Gauthier M.J., and Caledonia G.E. // J. Spacecr Rockets. 1993. V. 30. P. 509. https://doi.org/10.2514/3.25558
  11. Melin G.A. and Madix R.J. // Transactions of the Faraday Society. 1971. V. 67. P. 198. https://doi.org/10.1039/TF9716700198

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).