DNA supercoiling alleviates cold-sensitivity of promoter melting by extremophilic Deinococcus-Thermus RNA polymerases
- 作者: Kulbachinskiy A.V.1,2
-
隶属关系:
- National Research Center "Kurchatov Institute"
- Institute of Gene Biology, Russian Academy of Sciences
- 期: 卷 90, 编号 8 (2025)
- 页面: 1189-1200
- 栏目: Articles
- URL: https://bakhtiniada.ru/0320-9725/article/view/356274
- DOI: https://doi.org/10.31857/S0320972525080099
- EDN: https://elibrary.ru/VCHNBJ
- ID: 356274
如何引用文章
详细
Melting of promoter DNA around the transcription start site (TSS) is a critical step of transcription required for initiation of RNA synthesis. In bacteria, promoter melting is achieved by the holoenzyme of RNA polymerase (RNAP) consisting of the catalytic core enzyme and a promoter recognition subunit, the σ factor. Previously, we showed that RNAPs from thermophilic Thermus aquaticus and mesophilic Deinococcus radiodurans are unable to open promoters at ambient temperatures and require heating for DNA melting. These properties depend on their σ factors and are recapitulated in hybrid holoenzymes including these σ factors and the core enzyme of Escherichia coli. Here, we show that DNA supercoiling alleviates the observed cold-sensitivity of promoter opening by Deinococcus-Thermus RNAPs and by hybrid holoenzymes and allows melting of the transcription start site at the same temperatures as in the case of E. coli RNAP. Supercoiling also suppresses salt sensitivity of promoter complexes formed by these RNAPs. The results demonstrate that RNAPs from Deinococcus-Thermus species are sensitive to DNA supercoiling and suggest that they can be rapidly switched-off or activated by the supercoiling state of the host genomes.
作者简介
A. Kulbachinskiy
National Research Center "Kurchatov Institute"; Institute of Gene Biology, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: avkulb@yandex.ru
Moscow
参考
- Hustmyer, C. M., and Landick, R. (2024) Bacterial chromatin proteins, transcription, and DNA topology: inseparable partners in the control of gene expression, Mol. Microbiol., 122, 81-112
- Kant, A., Guo, Z., Vinayak, V., Neguembor, M. V., Li, W. S., Agrawal, V., Pujadas, E., Almassalha, L., Backman, V., Lakadamyali, M., Cosma, M. P., and Shenoy, V. B. (2024) Active transcription and epigenetic reactions synergistically regulate meso-scale genomic organization, Nat. Commun., 15, 4338
- Figueroa-Bossi, N., Fernandez-Fernandez, R., Kerboriou, P., Bouloc, P., Casadesus, J., Sanchez-Romero, M. A., and Bossi, L. (2024) Transcription-driven DNA supercoiling counteracts H-NS-mediated gene silencing in bacterial chromatin, Nat. Commun., 15, 2787
- Kumar, C., and Remus, D. (2024) Looping out of control: R-loops in transcription-replication conflict, Chromosoma, 133, 37-56
- Santos-Pereira, J. M., and Aguilera, A. (2015) R loops: new modulators of genome dynamics and function, Nat. Rev. Genet., 16, 583-597
- Sutormin, D., Galivondzhyan, A., Musharova, O., Travin, D., Rusanova, A., Obraztsova, K., Borukhov, S., and Severinov, K. (2022) Interaction between transcribing RNA polymerase and topoisomerase I prevents R-loop formation in E. coli, Nat. Commun., 13, 4524
- Borowiec, J. A., and Gralla, J. D. (1985) Supercoiling response of the lac ps promoter in vitro, J. Mol. Biol., 184, 587-598
- Buc, H., and McClure, W. R. (1985) Kinetics of open complex formation between Escherichia coli RNA polymerase and the lac UV5 promoter. Evidence for a sequential mechanism involving three steps, Biochemistry, 24, 2712-2723
- Mishra, R. K., Gopal, V., and Chatterji, D. (1990) Correlation between the DNA supercoiling and the initiation of transcription by Escherichia coli RNA polymerase in vitro: role of the sequences upstream of the promoter region, FEBS Lett., 260, 273-276
- Nickerson, C. A., and Achberger, E. C. (1995) Role of curved DNA in binding of Escherichia coli RNA polymerase to promoters, J Bacteriol, 177, 5756-5761
- Ehrlich, R., Larousse, A., Jacquet, M. A., Marin, M., and Reiss, C. (1985) In vitro transcription initiation from three different Escherichia coli promoters. Effect of supercoiling, Eur. J. Biochem., 148, 293-298
- Burns, H., and Minchin, S. (1994) Thermal energy requirement for strand separation during transcription initiation: the effect of supercoiling and extended protein DNA contacts, Nucleic Acids Res., 22, 3840-3845
- Ding, B. (2010) Viroids: self-replicating, mobile, and fast-evolving noncoding regulatory RNAs, Wiley Interdiscip. Rev. RNA, 1, 362-375
- Figueroa-Bossi, N., Guerin, M., Rahmouni, R., Leng, M., and Bossi, L. (1998) The supercoiling sensitivity of a bacterial tRNA promoter parallels its responsiveness to stringent control, EMBO J., 17, 2359-2367
- Revyakin, A., Liu, C., Ebright, R. H., and Strick, T. R. (2006) Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching, Science, 314, 1139-1143
- Kulbachinskiy, A., Bass, I., Bogdanova, E., Goldfarb, A., and Nikiforov, V. (2004) Cold sensitivity of thermophilic and mesophilic RNA polymerases, J. Bacteriol., 186, 7818-7820
- Meier, T., Schickor, P., Wedel, A., Cellai, L., and Heumann, H. (1995) In vitro transcription close to the melting point of DNA: analysis of Thermotoga maritima RNA polymerase-promoter complexes at 75 degrees C using chemical probes, Nucleic Acids Res., 23, 988-994
- Minakhin, L., Nechaev, S., Campbell, E. A., and Severinov, K. (2001) Recombinant Thermus aquaticus RNA polymerase, a new tool for structure-based analysis of transcription, J. Bacteriol., 183, 71-76
- Nikiforov, V. G. (1970) Substrate dependent heterogeneity of initiation by RNA polymerase from thermophilic B. megaterium, FEBS Lett., 9, 186-188
- Remold-O'Donnell, E., and Zillig, W. (1969) Purification and properties of DNA-dependent RNA-polymerase from Bacillus stearothermophilus, Eur. J. Biochem., 7, 318-323
- Xue, Y., Hogan, B. P., and Erie, D. A. (2000) Purification and initial characterization of RNA polymerase from Thermus thermophilus strain HB8, Biochemistry, 39, 14356-14362
- Barinova, N., Zhilina, E., Bass, I., Nikiforov, V., and Kulbachinskiy, A. (2008) Lineage-specific amino acid substitutions in region 2 of the RNA polymerase sigma subunit affect the temperature of promoter opening, J. Bacteriol., 190, 3088-3092
- Miropolskaya, N., Ignatov, A., Bass, I., Zhilina, E., Pupov, D., and Kulbachinskiy, A. (2012) Distinct functions of regions 1.1 and 1.2 of RNA polymerase sigma subunits from Escherichia coli and Thermus aquaticus in transcription initiation, J. Biol. Chem., 287, 23779-23789
- Feklistov, A., Barinova, N., Sevostyanova, A., Heyduk, E., Bass, I., Vvedenskaya, I., Kuznedelov, K., Merkiene, E., Stavrovskaya, E., Klimasauskas, S., Nikiforov, V., Heyduk, T., Severinov, K., and Kulbachinskiy, A. (2006) A basal promoter element recognized by free RNA polymerase sigma subunit determines promoter recognition by RNA polymerase holoenzyme, Mol. Cell, 23, 97-107
- Feklistov, A., Sharon, B. D., Darst, S. A., and Gross, C. A. (2014) Bacterial sigma factors: a historical, structural, and genomic perspective, Annu. Rev. Microbiol., 68, 357-376
- Haugen, S. P., Berkmen, M. B., Ross, W., Gaal, T., Ward, C., and Gourse, R. L. (2006) rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase, Cell, 125, 1069-1082
- Miropolskaya, N., Artsimovitch, I., Klimasauskas, S., Nikiforov, V., and Kulbachinskiy, A. (2009) Allosteric control of catalysis by the F loop of RNA polymerase, Proc. Natl. Acad. Sci. USA, 106, 18942-18947
- Miropolskaya, N., Esyunina, D., Klimasauskas, S., Nikiforov, V., Artsimovitch, I., and Kulbachinskiy, A. (2014) Interplay between the trigger loop and the F loop during RNA polymerase catalysis, Nucleic Acids Res., 42, 544-552
- Borukhov, S., and Goldfarb, A. (1993) Recombinant Escherichia coli RNA polymerase: purification of individually overexpressed subunits and in vitro assembly, Protein. Express Purif., 4, 503-511
- Nudler, E., Kashlev, M., Nikiforov, V., and Goldfarb, A. (1995) Coupling between transcription termination and RNA polymerase inchworming, Cell, 81, 351-357
- Pommier, Y., Sun, Y., Huang, S. N., and Nitiss, J. L. (2016) Roles of eukaryotic topoisomerases in transcription, replication and genomic stability, Nat. Rev. Mol. Cell Biol., 17, 703-721
- Kulbachinskiy, A., Feklistov, A., Krasheninnikov, I., Goldfarb, A., and Nikiforov, V. (2004) Aptamers to Escherichia coli core RNA polymerase that sense its interaction with rifampicin, sigma-subunit and GreB, Eur. J. Biochem., 271, 4921-4931
- Gourse, R. L. (1988) Visualization and quantitative analysis of complex formation between E. coli RNA polymerase and an rRNA promoter in vitro, Nucleic Acids Res., 16, 9789-9809
- Newlands, J. T., Ross, W., Gosink, K. K., and Gourse, R. L. (1991) Factor-independent activation of Escherichia coli rRNA transcription. II. Characterization of complexes of rrnB P1 promoters containing or lacking the upstream activator region with Escherichia coli RNA polymerase, J. Mol. Biol., 220, 569-583
- Ding, H. F., and Winkler, H. H. (1993) Characterization of the DNA-melting function of the Rickettsia prowazekii RNA polymerase, J. Biol. Chem., 268, 3897-3902
- Miropolskaya, N., Esyunina, D., and Kulbachinskiy, A. (2017) Conserved functions of the trigger loop and Gre factors in RNA cleavage by bacterial RNA polymerases, J. Biol. Chem., 292, 6744-6752
- Miropolskaya, N., Nikiforov, V., Klimasauskas, S., Artsimovitch, I., and Kulbachinskiy, A. (2010) Modulation of RNA polymerase activity through trigger loop folding, Transcription, 1, 89-94
- Goldman, S. R., Sharp, J. S., Vvedenskaya, I. O., Livny, J., Dove, S. L., and Nickels, B. E. (2011) NanoRNAs prime transcription initiation in vivo, Mol. Cell, 42, 817-825
- Agapov, A. A., and Kulbachinskiy, A. V. (2015) Mechanisms of stress resistance and gene regulation in the radioresistant bacterium Deinococcus radiodurans, Biochemistry (Moscow), 80, 1201-1216
- Slade, D., and Radman, M. (2011) Oxidative stress resistance in Deinococcus radiodurans, Microbiol. Mol. Biol. Rev., 75, 133-191
- Esyunina, D., Turtola, M., Pupov, D., Bass, I., Klimasauskas, S., Belogurov, G., and Kulbachinskiy, A. (2016) Lineage-specific variations in the trigger loop modulate RNA proofreading by bacterial RNA polymerases, Nucleic Acids Res., 44, 1298-1308
- Agapov, A., Esyunina, D., Pupov, D., and Kulbachinskiy, A. (2016) Regulation of transcription initiation by Gfh factors from Deinococcus radiodurans, Biochem. J., 473, 4493-4505
- Esyunina, D., Agapov, A., and Kulbachinskiy, A. (2016) Regulation of transcriptional pausing through the secondary channel of RNA polymerase, Proc. Natl. Acad. Sci. USA, 113, 8699-8704
- Kota, S., Chaudhary, R., Mishra, S., and Misra, H. S. (2021) Topoisomerase IB interacts with genome segregation proteins and is involved in multipartite genome maintenance in Deinococcus radiodurans, Microbiol. Res., 242, 126609
- Kota, S., Charaka, V. K., Ringgaard, S., Waldor, M. K., and Misra, H. S. (2014) PprA contributes to Deinococcus radiodurans resistance to nalidixic acid, genome maintenance after DNA damage and interacts with deinococcal topoisomerases, PLoS One, 9, e85288
- Kota, S., Charaka, V. K., and Misra, H. S. (2014) PprA, a pleiotropic protein for radioresistance, works through DNA gyrase and shows cellular dynamics during postirradiation recovery in Deinococcus radiodurans, J. Genet., 93, 349-354
补充文件

