SERINE PEPTIDASE HOMOLOG FROM THE BEETLE Tenebrio molitor WITH SUBSTITUTION OF SERINE RESIDUE WITH THREONINE IN THE CATALYTIC TRIAD
- Autores: Zhiganov N.I1,2, Gubaeva A.S2, Tereshchenkova V.F2, Dunaevsky Y.E1, Belozersky M.A1, Elpidina E.N1
-
Afiliações:
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Lomonosov Moscow State University
- Edição: Volume 90, Nº 11 (2025)
- Páginas: 1781–1793
- Seção: Articles
- URL: https://bakhtiniada.ru/0320-9725/article/view/362453
- DOI: https://doi.org/10.7868/S3034529425110156
- ID: 362453
Citar
Resumo
Palavras-chave
Sobre autores
N. Zhiganov
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Lomonosov Moscow State UniversityMoscow, Russia
A. Gubaeva
Lomonosov Moscow State UniversityMoscow, Russia
V. Tereshchenkova
Lomonosov Moscow State UniversityMoscow, Russia
Y. Dunaevsky
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
M. Belozersky
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
E. Elpidina
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Email: elp@belozersky.msu.ru
Moscow, Russia
Bibliografia
- Rawlings, N. D., and Barrett, A. J. (2013) Introduction: Serine Peptidases and Their Clans. Handbook of Proteolytic Enzymes, (Rawlings, N. D., and Salvesen, G., eds) 3rd Edn, Elsevier Ltd., pp. 2491-2523, https://doi.org/10.1016/B978-0-12-382219-2.00559-7.
- Schechter, I., and Berger, A. (1967) On the size of the active site in proteases. I. Papain, Biochem. Biophys. Res. Commun., 27, 157-162, https://doi.org/10.1016/S0006-291X(67)80055-X.
- Reynolds, S. L., and Fischer, K. (2015) Pseudoproteases: mechanisms and function, Biochem. J., 468, 17-24, https://doi.org/10.1042/BJ20141506.
- Rawlings, N. D., and Bateman, A. (2021) How to use the MEROPS database and website to help understand peptidase specificity, Protein Sci., 30, 83-92, https://doi.org/10.1002/pro.3948.
- Levine, R. (2011) i5K: the 5,000 insect genome project, Am. Entomol., 57, 110-113, https://doi.org/10.1093/ae/57.2.110.
- Ross, J., Jiang, H., Kanost, M., and Wanga, Y. (2003) Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships, Gene, 304, 117-131, https://doi.org/10.1016/s0378-1119(02)01187-3.
- Cao, X., Gulati, M., and Jiang, H. (2017) Serine protease-related proteins in the malaria mosquito, Anopheles gambiae, Insect Biochem. Mol. Biol., 88, 48-62, https://doi.org/10.1016/j.ibmb.2017.07.008.
- Zou, Z., Lopez, D. L., Kanost, M. R., Evans, J. D., and Jiang, H. (2006) Comparative analysis of serine protease-related genes in the honey bee genome: possible involvement in embryonic development and innate immunity, Insect Mol. Biol., 15, 603-614, https://doi.org/10.1111/j.1365-2583.2006.00684.x.
- Yang, L., Lin, Z., Fang, Q., Wang, J., Yan, Z., Zou, Z., Song, Q., and Ye, G. (2017) The genomic and transcriptomic analyses of serine proteases and their homologs in an endoparasitoid, Pteromalus puparum, Dev. Comp. Immunol., 77, 56-68, https://doi.org/10.1016/j.dci.2017.07.014.
- Zhao, P., Wang, G. H., Dong, Z. M., Duan, J., Xu, P. Z., Cheng, T. C., Xiang, Z. H., and Xia, Q. Y. (2010) Genome-wide identification and expression analysis of serine proteases and homologs in the silkworm Bombyx mori, BMC Genomics, 11, 405, https://doi.org/10.1186/1471-2164-11-405.
- Lin, H., Xia, X., Yu, L., Vasseur, L., Gurr, G. M., Yao, F., Yang, G., and You, M. (2015) Genome-wide identification and expression profiling of serine proteases and homologs in the diamondback moth, Plutella xylostella (L.), BMC Genomics, 16, 1054, https://doi.org/10.1186/s12864-015-2243-4.
- Cao, X., He, Y., Hu, Y., Zhang, X., Wang, Y., Zou, Z., Chen, Y., Blissard, G. W., Kanost, M. R., and Jiang, H. (2015) Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta, Insect Biochem. Mol. Biol., 62, 51-63, https://doi.org/10.1016/j.ibmb.2014.10.006.
- Zhiganov, N. I., Vinokurov, K. S., Salimgareev, R. S., Tereshchenkova, V. F., Dunaevsky, Y. E., Belozersky, M. A., and Elpidina, E. N. (2024) The set of serine peptidases of the Tenebrio molitor beetle: transcriptomic analysis on different developmental stages, Int. J. Mol. Sci., 25, 5743, https://doi.org/10.3390/ijms25115743.
- Cao, X., and Jiang, H. (2018) Building a platform for predicting functions of serine protease-related proteins in Drosophila melanogaster and other insects, Insect Biochem. Mol. Biol., 103, 53-69, https://doi.org/10.1016/j.ibmb.2018.10.006.
- Kwon, T. H., Kim, M. S., Choi, H. W., Joo, C. H., Cho, M. Y., and Lee, B. L. (2000) A masquerade-like serine proteinase homologue is necessary for phenoloxidase activity in the coleopteran insect, Holotrichia diomphalia larvae, Eur. J. Biochem., 267, 6188-6196, https://doi.org/10.1046/j.1432-1327.2000.01695.x.
- Lee, K. Y., Zhang, R., Kim, M. S., Park, J. W., Park, H. Y., Kawabata, S., and Lee, B. L. (2002) A zymogen form of masquerade-like serine proteinase homologue is cleaved during pro-phenoloxidase activation by Ca2+ in coleopteran and Tenebrio molitor larvae, Eur. J. Biochem., 269, 4375-4383, https://doi.org/10.1046/j.1432-1033.2002.03155.x.
- Gupta, S., Wang, Y., and Jiang, H. (2005) Manduca sexta prophenoloxidase (proPO) activation requires proPO-activating proteinase (PAP) and serine proteinase homologs (SPHs) simultaneously, Insect Biochem. Mol. Biol., 35, 241-248, https://doi.org/10.1016/j.ibmb.2004.12.003.
- Liu, H. P., Chen, R. Y., Zhang, M., and Wang, K. J. (2010) Isolation, gene cloning and expression profile of a pathogen recognition protein: a serine proteinase homolog (Sp-SPH) involved in the antibacterial response in the crab Scylla paramamosain, Dev. Comp. Immunol., 34, 741-748, https://doi.org/10.1016/j.dci.2010.02.005.
- Kanost, M. R., and Jiang, H. (2015) Clip-domain serine proteases as immune factors in insect hemolymph, Curr. Opin. Insect Sci., 11, 47-55, https://doi.org/10.1016/j.cois.2015.09.003.
- Fischer, K., Langendorf, C. G., Irving, J. A., Reynolds, S., Willis, C., Beckham, S., Law, R. H., Yang, S., Bashtannyk-Puhalovich, T. A., McGowan, S., Whistock, J. C., Pike, R. N., Kemp, D. J., and Buckle, A. M. (2009) Structural mechanisms of inactivation in scabies mite serine protease paralogues, J. Mol. Biol., 390, 635-645, https://doi.org/10.1016/j.jmb.2009.04.082.
- Reynolds, S. L., Pike, R. N., Mika, A., Blom, A. M., Hofmann, A., Wijeyewickrema, L. C., Kemp, D., and Fischer, K. (2014) Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway, PLoS Negl. Trop. Dis., 8, e2872, https://doi.org/10.1371/journal.pntd.0002872.
- Watorek, W. (2003) Azurocidin – inactive serine proteinase homolog acting as a multifunctional inflammatory mediator, Acta Biochim. Pol., 50, 743-752.
- Kurosky, A., Barnett, D. R., Lee, T. H., Touchstone, B., Hay, R. E., Arnott, M. S., Bowman, B. H., and Fitch, W. M. (1980) Covalent structure of human haptoglobin: a serine protease homolog, Proc. Natl. Acad. Sci. USA, 77, 3388-3392, https://doi.org/10.1073/pnas.77.6.3388.
- Andersen, C. B. F., Stødkilde, K., Seederup, K. L., Kuhlee, A., Raunser, S., and Graversen, J. H. (2017) Haptoglobin, Antioxid. Redox Signal., 26, 814-831, https://doi.org/10.1089/ars.2016.6793.
- Rezaie, A. R., Bae, J. S., Manithody, C., Qureshi, S. H., and Yang, L. (2008) Protein Z-dependent protease inhibitor binds to the C-terminal domain of protein Z, J. Biol. Chem., 283, 19922-19926, https://doi.org/10.1074/jbc.M802639200.
- Chandrasekaran, V., Lee, C. J., Duke, R. E., Perera, L., and Pedersen, L. G. (2008) Computational study of the putative active form of protein Z (PZa): sequence design and structural modeling, Protein Sci., 17, 1354-1361, https://doi.org/10.1110/ps.034801.108.
- Campanelli, D., Detmers, P. A., Nathan, C. F., and Gabay, J. E. (1990) Azurocidin and a homologous serine protease from neutrophils. Differential antimicrobial and proteolytic properties, J. Clin. Invest., 85, 904-915, https://doi.org/10.1172/JCI114518.
- Wex, T., Lipyansky, A., Brömme, N. C., Wex, H., Guan, X. Q., and Brömme, D. (2001) TIN-ag-RP, a novel catalytically inactive cathepsin B-related protein with EGF domains, is predominantly expressed in vascular smooth muscle cells, Biochemistry, 40, 1350-1357, https://doi.org/10.1021/bi0022660.
- Plis, B., and Schultz, J. (2004) Inactive enzyme-homologues find new function in regulatory processes, J. Mol. Biol., 340, 399-404, https://doi.org/10.1016/j.jmb.2004.04.063.
- Katoh, K., Rozewicki, J., and Yamada, K. D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization, Brief Bioinform., 20, 1160-1166, https://doi.org/10.1093/bib/bbx108.
- Perona, J. J., and Craik, C. S. (1995) Structural basis of substrate specificity in the serine proteases, Protein Sci., 4, 337-360, https://doi.org/10.1002/pro.5560040301.
- Терещенкова В. Ф., Жиганов Н. И., Акентьев Ф. И., Губайдуллин И. И., Козлов Д. Г., Беляева Н. В., Филиппова И. Ю., Элпидина Е. Н. (2021) Получение и свойства рекомбинантного протеолитически активного гомолога сериновой пептидазы SerPH122 Tenebrio molitor, Прикл. Биохим. Микробіол., 57, 450-457, 10.31857/S0555109921050172.
- Frugoni, J. A. C. (1957) Tampone universale di Britton e Robinson a forza ionica constante, Gazz. Chem. Ital., 87, 403-407.
- Goodman, M., Toniolo, C., Moroder, L., and Felix, A. (2004) Houben-Weyl Methods of Organic Chemistry: Synthesis of Peptides and Peptidominetics, 4th Edn., Vol. E22a, Stuttgart, NY, Thieme, https://doi.org/10.1055/b-0035-112838.
- Filippova, I. Y., Dvoryakova, E. A., Sokolenko, N. I., Simonyan, T. R., Tereshchenkova, V. F., Zhiganov, N. I., Dunaevsky, Y. E., Belozersky, M. A., Oppert, B., and Elpidina, E. N. (2020) New glutamine-containing substrates for the assay of cysteine peptidases from the C1 papain family, Front. Mol. Biosci., 7, 578758, https://doi.org/10.3389/fmolb.2020.578758.
- Терещенкова В. Ф., Жиганов Н. И., Губаева А. С., Акентьев Ф. И., Дунаевский Я. Е., Козлов Д. Г., Белозерский М. А., Элпидина Е. Н. (2024) Рекомбинантная химотрипсиноподобная пептидаза Tenebrio molitor с неканоническим субстрат-связывающим сайтом, Прикл. Биохим. Микробіол., 60, 344-355, https://doi.org/10.31857/S0555109924030045.
- Zhiganov, N. I., Tereshchenkova, V. F., Serebryakova, M.V., Dunaevsky, Y. E., Belozersky, M. A., and Elpidina E. N. (2025) Identification and localization of the set of serine peptidases and their homologs in the larval midgut of Tenebrio molitor L., Insect Mol. Biol. [Article submitted].
- Vinokurov, K. S., Elpidina, E. N., Oppert, B., Prabhakar, S., Zhuzhikov, D. P., Dunaevsky, Y. E., and Belozersky, M. A. (2006) Diversity of digestive proteinases in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 145, 126-137, https://doi.org/10.1016/j.cbpb.2006.05.005.
- Perkin, L. C., Elpidina, E. N., and Oppert, B. (2017) RNA interference and dietary inhibitors induce a similar compensation response in Tribolium castaneum larvae, Insect Mol. Biol., 26, 35-45, https://doi.org/10.1111/imb.12269.
Arquivos suplementares

