20 YEARS OF DNA BARCODING – SOME RESULTS AND PROBLEMS
- Авторлар: Shneyer V.S1, Rodionov A.V1
-
Мекемелер:
- Komarov Botanical Institute, Russian Academy of Sciences
- Шығарылым: Том 90, № 11 (2025)
- Беттер: 1708-1726
- Бөлім: Articles
- URL: https://bakhtiniada.ru/0320-9725/article/view/362448
- DOI: https://doi.org/10.7868/S3034529425110112
- ID: 362448
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
V. Shneyer
Komarov Botanical Institute, Russian Academy of Sciences
Email: shneyer@binran.ru
197022 Saint-Petersburg, Russia
A. Rodionov
Komarov Botanical Institute, Russian Academy of Sciences197022 Saint-Petersburg, Russia
Әдебиет тізімі
- Спирин А. С., Белозерский А. Н., Шугаева Н. В., Ванюшин Б. Ф. (1957) Изучение видовой специфичности нуклеиновых кислот у бактерий, Биохимия, 22, 744-754.
- Shneyer, V. S. (2007) On the species specificity of DNA: fifty years after, Biochemistry (Moscow), 72, 1377-1384, https://doi.org/10.1134/S0006297907120127.
- Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. (2003) Biological identifications through DNA barcodes, Proc. Biol. Sci., 270, 313-321, https://doi.org/10.1098/rspb.2002.2218.
- Hebert, P. D. N, Ratnasingham, S., and deWaard, J. R. (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species, Proc. Biol. Sci., 270, S96-S99, doi: 10.1098/rsbl.2003.0025.
- Cristescu, M. E., and Hebert, P. D. N. (2018) Uses and misuses of environmental DNA in biodiversity science and conservation, Annu. Rev. Ecol. Evol. Syst., 49, 209-230, https://doi.org/10.1146/annurev-ecolsys-110617-062306.
- De Salle, R., and Goldstein, P. (2019) Review and interpretation of trends in DNA barcoding, Front. Ecol. Evol., 7, 302, https://doi.org/10.3389/fevo.2019.00.
- Шеховцов С. В., Шеховцова И. Н., Пельтек С. Е. (2019) ДНК-штрихкодирование: методы и подходы, Усп. Совр. Биол., 139, 211-220, https://doi.org/10.1134/S0042132419030074.
- Yang, C., Lv, Q., and Zhang, A. (2020) Sixteen years of DNA barcoding in China: what has been done? What can be done? Front. Ecol. Evol., 8, 57, https://doi.org/10.3389/fevo.2020.00057.
- Liberty, J. T., Lin, H., Kucha, C., Sun, S., and Alsalman, F. B. (2025) Innovative approaches to food traceability with DNA barcoding: beyond traditional labels and certifications, Ecol. Genet. Genom., 34, 100317, https://doi.org/10.1146/annurev-ento-040124-014001.
- Meier, R., Lawniczak, M. K., and Srivathsan, A. (2025) Illuminating entomological dark matter with DNA barcodes in an era of insect decline, deep learning, and genomics, Annu. Rev. Entomol., 70, 185-204, https://doi.org/10.1016/j.egg.2024.100317.
- Hebert, P. D. N., Hollingsworth, P. M., and Hajibabaei, M. (2016) From writing to reading the encyclopedia of life, Phil. Trans. R. Soc. B, 371, 20150321, https://doi.org/10.1098/rstb.2015.0321.
- deWaard, J., Ratnasingham, S., Zakharov, E., Borisenko, A., Steinke, D., Telfer, A., Perez, K. J., Sones J., Young, M., Levesque-Beaudin, V., Sobel, C., Abrahamyan, A., Bessonov, K., Blagoev, G., deWaard, S., Ho, C., Ivanova, N., Layton, K. S., Lu, L., Manjunath, R., McKeown, J. A., Milton, M., Miskie, R., Monkhouse, N., Naik, S., Nikolova, N., Pentinsaari, M., Prosser, S. J., Radulovici, A., Steinke, C., Warne, C., and Hebert, P. N. H. (2019) A reference library for Canadian invertebrates with 1.5 million barcodes, voucher specimens, and DNA samples, Sci. Data, 6, 308, https://doi.org/10.1038/s41597-019-0320-2.
- Meiklejohn, K. A., Damaso, N., and Robertson, J. M. (2019) Assessment of BOLD and GenBank – their accuracy and reliability for the identification of biological materials, PLoS One, 14, e0217084, https://doi.org/10.1371/journal.pone.0217084.
- Ratnasingham, S., and Hebert, P. D. N. (2013) A DNA-based registry for all animal species: the Barcode Index Number (BIN), system, PLoS One, 8, e66213, https://doi.org/10.1371/journal.pone.0066213.
- Kartavtsev, Y. P. (2018) Barcode Index Number, taxonomic rank and modes of speciation: examples from fish, Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 29, 535-542, https://doi.org/10.1080/24701394.2017.1315570.
- Sokal, R. R., and Sneath, P. H. A. (1963) Principles of Numerical Taxonomy, San Francisco.
- Chan, K. O., Hertwig, S. T., Neokleous, D. N., Flury, J. M., and Brown, R. M. (2022) Widely used, short 16S rRNA mitochondrial gene fragments yield poor and erratic results in phylogenetic estimation and species delimitation of amphibians, BMC Ecol. Evol., 22, 37, https://doi.org/10.1186/s12862-022-01994-y.
- Combosch, D. J., Burdick, D., Primov, K., Rios, D., Rios, K., and Fernandez, J. (2024) Barcoding and mitochondrial phylogenetics of Porites corals, PLoS One, 19, e0290505, https://doi.org/10.1371/journal.pone.02905.
- McFadden, C. S., Reynolds, A. M., and Janes, M. P. (2014) DNA barcoding of xeniid soft corals (Octocorallia: Alcyonacea: Xeniidae) from Indonesia: species richness and phylogenetic relationships, Syst. Biodivers., 12, 247-257, https://doi.org/10.1080/14772000.2014.9028.
- Vargas, S, Kelly, M., Schnabel, K, Mills, S., Bowden, D., and Wörheide, G. (2015) Diversity in a cold hot-spot: DNA-barcoding reveals patterns of evolution among antarctic Demosponges (class Demospongiae, phylum Porifera), PLoS One, 10, e0127573, https://doi.org/10.1371/journal.pone.0127573.
- Erpenbeck, D., Steiner, M., Schuster, A., Genner, M. J., Manconi, R., Pronzato, R., Ruthensteiner, B., van den Spiegel, D., van Soest, R. W. M., and Wörheide, G. (2019) Minimalist barcodes for sponges: a case study classifying African freshwater Spongillid, Genome, 62, 1-10, https://doi.org/10.1139/gen-2018-0098.
- Lavrov, D. V., Pett, W., Voigt, O., Wörheide, G., Forget, L., Lang, B. F., and Kayal, E. (2013) Mitochondrial DNA of Clathrina clathrus (Calcarea, Calcinea): six linear chromosomes, fragmented rRNAs, tRNA editing, and a novel genetic code, Mol. Biol. Evol., 30, 865-880, https://doi.org/10.1093/molbev/mss274.
- Lavrov, D. V., Adamski, M., Chevaldonné, P., and Adamska, M. (2016) Extensive mitochondrial mRNA editing and unusual mitochondrial genome organization in calcaronean sponges, Curr. Biol., 26, 86-92, https://doi.org/10.1016/j.cub.2015.11.043.
- Voigt, O., and Wörheide, G. (2016) A short LSU rRNA fragment as a standard marker for integrative taxonomy in calcareous sponges (Porifera: Calcarea), Org. Divers. Evol., 16, 53-64, https://doi.org/10.1007/s13127-015-0247-1.
- CBOL Plant Working Group, Hollingsworth, P. M., Forrest, L. L., and Little, D. P. (2009) A DNA barcode for land plants, Proc. Natl. Acad. Sci. USA, 106, 12794-12797, https://doi.org/10.1073/pnas.0905845106.
- China Plant BOL Group, Li, D. Z., Gao, L. M., and Guan D. W. (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants, Proc. Natl. Acad. Sci. USA, 108, 19641-19646, https://doi.org/10.1073/pnas.1104551108.
- Hollingsworth, P. M. (2011) Refining the DNA barcode for land plants, Proc. Natl. Acad. Sci. USA, 108, 19451-19452, https://doi.org/10.1073/pnas.1116812108.
- Gu, Z., Yang, L.-E., Chen, Z., and Chen, W. (2020) Comparative analysis of different DNA barcodes for applications in the identification and production of Pyropia, Algal Res., 47, 101874, https://doi.org/10.1016/j.algal.2020.101874.
- Shneyer, V. S., and Rodionov, A. V. (2019) Plant DNA-barcodes, Biol. Bull. Rev., 9, 295-300, https://doi.org/10.1134/s207908641904008x.
- Lücking, R., Aime M. C., Robbertse, B., Miller, A. N., Hiran, A., Ariyawansa, H. A., Aoki, T., Cardinali, G., Crous, P. W., Druzhinina, I.S., Geiser, D.M., Hawksworth, D. L., Hyde, K. D., Irinyi, L., Jeewon, R., Johnston, P. R., Kirk, P. M., Malosso, E., May, T. W., Meyer, W., Öpik, M., Robert, V., Stadler, M., Thines, M., Vu, D., Yurkov, A. M., Zhang, N., and Schoch, C. L. (2020) Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus, 11, 14, https://doi.org/10.1186/s43008-020-00033-z.
- Hajibabaei, M. D., Smith, M. A., Janzen, D. H., Rodriguez, J. J., Whitfield, J. B., and Hebert, P. D. N., (2006) A minimalist barcode can identify a specimen whose DNA is degraded, Mol. Ecol. Notes, 6, 4, 959-964, https://doi.org/10.1111/j.1471-8286.2006.01470.x.
- Gao, Z., Liu, Y., Wang, X., Wei, X., and Han, J (2019) DNA Mini-barcoding: a derived barcoding method for herbal molecular identification, Front. Plant Sci., 10, 987, https://doi.org/10.3389/fpls.2019.00987.
- Grzywacz, A., Wyborska, D., and Piwczyński, M. (2017) DNA barcoding allows identification of European Fanniidae (Diptera) of forensic interest, Forensic Sci. Int., 278, 106-114, https://doi.org/10.1016/j.forsciint.
- Dong, W., Liu, H., Xu, C., Zuo, Y., Chen, Z., and Zhou, S. (2014) A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: a case study on ginsengs, BMC Genet., 15, 138, https://doi.org/10.1186/s12863-014-0138-z.
- Gorini, T., Mezzasalma, V., Deligia, M., De Mattia, F., Campone, L., Labra, M., and Frigerio, J. (2023) Check your shopping cart: DNA barcoding and mini-barcoding for food authentication, Foods, 12, 2392, https://doi.org/10.3390/ foods12122392.
- Xie, X., Ye, H., Cai, X., Li, C., Li, F., Tian, E., and Chao, Z. (2021) DNA mini-barcodes, a potential weapon for conservation and combating illegal trade of pangolin, Trop. Conserv. Sci., 14, 1-10, https://doi.org/10.1177/19400829211017361.
- Somaratne, Y., Guan D.-L., Wang, W.-Q., Zhao, L., and Xu, S.-Q. (2019) Complete chloroplast genome sequence of Xanthium sibiricum provides useful DNA barcodes for future species identification and phylogeny, Plant. Syst. Evol., 305, 949-960, https://doi.org/10.1007/s00606-019-01614-1.
- Rather, S. A., Wang, K., Wang, T., Liu, H., and Schneider, H. (2025) Comparative chloroplast genome analysis reveals powerful barcodes for combatting illegal logging of CITES-listed threatened Asian rosewoods (Dalbergia, Leguminosae, Papilionoideae), Bot. J. Linn. Soc., 208, 347-368, https://doi.org/10.1093/botlinnean/boae086.
- Sharkey M. J., Janzen, D. H., Hallwachs, W., Chapman, E. G., Smith, M. A., Tanya Dapkey, T., Brown, A., Ratnasingham, S., Naik, S., Manjunath, R., Perez, K., Milton M., Hebert, P., Shaw S. R., Kittel, R. N., Alma Solis, M., Metz, M. A., Goldstein, P. Z., Brown, J. W., Quicke D. L. J., van Achterberg, C., Brown, B. V., and Burns J. M. (2021) Minimalist revision and description of 403 new species in 11 subfamilies of Costa Rican braconidparasitoid wasps, including host records for 219 species, ZooKeys, 1013, 1-665, https://doi.org/10.3897/zookeys.1013.55600.
- Coddington, J. A., Agnarsson, I., Cheng, R.-C., Čandek K., Driskell, A., Frick, H., Gregorič, M., Kostanjšek, R., Kropf, C., Kweskin, M., Lokovšek, T., Pipan, M., Vidergar, N., and Kuntner, M. (2016) DNA barcode data accurately assign higher spider taxa, PeerJ, 4, e2201, https://doi.org/10.7717/peerj.2201.
- Luo, A., Lan, H., Ling, C., Zhang, A., Shi, L., Ho, S.Y.W., and Zhu, C. (2015) A simulation study of sample size for DNA barcoding, Ecol. Evol., 5, 5869-5879, doi: 10.1002/ece3.1846.
- Zhang, A. B., He, L. J., Crozier, R. H., Muster, C., and Zhu, C.-D. (2010) Estimating sample sizes for DNA barcoding, Mol. Phylogenet. Evol., 54, 1035-1039, https://doi.org/10.1016/j.ympev.2009.09.014.
- Hebert, P. D. N., Ratnasingham, S., Zakharov, E. V., Telfer, A. C., Levesque-Beaudin, V., Milton, M. A. Pedersen S., Jannetta P., and deWaard, J. R. (2016) Counting animal species with DNA barcodes: Canadian insects, Philos. Transact. R. Soc. B., 371, 20150333, https://doi.org/10.1098/rstb.2015.0333.
- D’Ercole, J., Dincă, V., Opler, P. A., Kondla, N., Schmidt C., Phillips, J. D., Robbins, R., Burns, J., M., Miller, S. E., Grishin, N., Zakharov, E. V., DeWaard, J. R., Ratnasingham, R., and Hebert, P. D. N. (2021) A DNA barcode library for the butterflies of North America, PeerJ, 9, e11157, https://doi.org/10.7717/peerj.11157.
- De Vere, N., Rich, T. C. G., Ford, C. R., Trinder, S. A., Long, C., Moore, C. W., Satterthwaite, D., Davies, H., Allainguillaume, J., Ronca, S., Tatarinova, T., Garbett, H., Walker, K., and Wilkinson, M. J. (2012) DNA barcoding the native flowering plants and conifers of Wales, PLoS One, 7, e37945, https://doi.org/10.1371/journal.pone.0037945.
- Braukmann, T. W. A., Kuzmina, M. L., Sills, J., Zakharov, E. V., and Hebert, P. D. N. (2017) Testing the efficacy of DNA barcodes for identifying the vascular plants of Canada, PLoS One, 12, e0169515, https://doi.org/10.1371/journal.pone.0169515.
- Kolter, A., and Gemeinholzer, B. (2021) Plant DNA barcoding necessitates marker-specific efforts to establish more comprehensive reference databases, Genome, 64, 265-298, https://doi.org/10.1139/gen-2019-0198.
- Cheng, Z., Li, Q., Deng, J., Liu, Q., and Huang, X. (2023) The devil is in the details: Problems in DNA barcoding practices indicated by systematic evaluation of insect barcodes, Front. Ecol. Evol., 11, 1149839, https://doi.org/10.3389/fevo.2023.1149839.
- Särkinen, T., Staats, M., Richardson, J. E., Cowan, R. S., and Bakker, F. T. (2012) How to open the treasure chest? Optimising DNA extraction from herbarium specimens, PLoS One, 7, e43808, https://doi.org/10.1371/journal.pone.0043808.
- Spooner, D., and Ruess, H. (2014) Curating DNA specimens, in Proceedings of the U.S. Workshop on DNA Banking: DNA Banking for the 21st Century, eds. W. L. Applequist, L. M. Campbell. St. Louis, The William L. Brown Center at the Missouri Botanical Garden, pp. 71-80.
- Wilkie, P., Poulsen, A. D., Harris, D., and Forrest, L. L. (2013) The collection and storage of plant material for DNA extraction: The Teabag Method, Gardens’ Bulletin Singapore, 65, 231-234.
- Gostel, M. R., Kelloff, C., Wallick, K., and Funk, V. A. (2016) A workflow to preserve genome-quality tissue samples from plants in botanical gardens and arboreta, Appl. Plant Sci., 4, 1600039, https://doi.org/10.3732/apps.1600039.
- Seberg, O., Droege, G., Barker, K., Coddington, J. A., Funk, V., Gostel M., Petersen, G., and Smith, P. P. (2016) Global Genome Biodiversity Network: saving a blueprint of the Tree of Life – a botanical perspective, Ann. Bot., 118, 393-399, https://doi.org/10.1093/aob/mcw121.
- Kuzmina, M. L., Braukmann T. W. A., Fazekas, A. J., Graham, S. W., Dewaard, S. L. Rodrigues, A., Bennett, B. A., Dickinson, T. A., Saarela, J. M., Catling, P. M., Newmaster, S. G., Percy, D. M., Fenneman, E., Lauron-Moreau, A., Ford, B., Gillespie, L., Subramanyam, R., Whitton, J., Jennings, L., Metsger, D., Warne, C. P., Brown, A., Sears, E., DeWaard, J. R., Zakharov, E. V., and Hebert, P. D. N. (2017) Using herbarium-derived DNA s to assemble a largescale DNA barcode library for the vascular plants of Canada, App. Plant Sci., 5, 1700079, https://doi.org/10.3732/apps.1700079.
- Hebert, P. D. N., deWaard, J. R., Zakharov, E. V., Prosser, S. W. J., Sones, J. E., McKeown, J. T. A., Mantle, B., andLa Salle, J. (2013) A DNA ‘Barcode Blitz’: rapid digitization and sequencing of a natural history collection, PLoS One, 8, e68535, https://doi.org/10.1371/journal.pone.0068535.
- Sire, L., Gey, D., Debruyne, R., Noblecourt, T., Soldati, F., Barnouin, T., Parmain, G., Bouget, C., LopezVaamonde, C., and Rougerie, R. (2019) The challenge of DNA barcoding saproxylic beetles in natural history collections – exploring the potential of parallel multiplex sequencing with Illumina MiSeq, Front. Ecol. Evol., 7, 495, doi: 10.3389/fevo.2019.00495.
- Rinkert, A., Misiewicz, T., Carter, B., Salmaan, A., and Whittall, J. (2021) Bird nests as botanical time capsules: DNA barcoding identifies the contents of contemporary and historical nests, PLoS One, 16, e0257624, https://doi.org/10.1371/journal.pone.0257624.
- Grealy A., Langmore, N. E., Joseph, L., and Holleley, C. E. (2021) Genetic barcoding of museum eggshell improves data integrity of avian biological collections, Sci. Rep., 11, 1605, https://doi.org/10.1038/s41598-020-79852-4.
- Calvignac-Spencer, S., Merkel, K., Kutzner, N., Kühl, H., Boesch, C., Kappeler, P. M., Metzger, S., Schubert, G., and Leendertz, F. H. (2013) Carrion fly-derived DNA as a tool for comprehensive and cost-effective assessment of mammalian biodiversity, Mol. Ecol., 22, 915-924, https://doi.org/10.1111/mec.12183.
- Schnell, I. B., Sollmann, R., Calvignac-Spencer, S., Siddall, M. E., Yu, D. W., Wilting, A., and Gilbert, M. T. P. (2015) iDNA from terrestrial haematophagous leeches as a wildlife surveying and monitoring tool – prospects, pitfalls and avenues to be developed, Front Zool., 12, 24, https://doi.org/10.1186/s12983-015-0115-z.
- Saranholi, B. H., Rodriguez-Castro, K. G., Carvalho, C. S., Chahad-Ehlers, S., Gestich, C. C., Andrade, S. C. S., Freitas, P. D., and Galetti, P. D. (2023) Comparing iDNA from mosquitoes and flies to survey mammals in a semi-controlled Neotropical area, Mol. Ecol. Resour., 23, 1790-1799, https://doi.org/10.1111/1755-0998.13851.
- Alsos, I. G., Lammers, Y., Yoccoz, N. G., Jørgensen, T., Sjögren, P., Gielly, L., and Edwards, M. E. (2018) Plant DNA metabarcoding of lake sediments: how does it represent the contemporary vegetation, PLoS One, 13, e0195403, https://doi.org/10.1371/journal.pone.0195403.
- Bruno, A., Sandionigi, A., Agostinetto, G., Bernabovi, L., Frigerio, J., Casiraghi, M., and Labra, M. (2019) Food tracking perspective: DNA metabarcoding to identify plant composition in complex and processed food products, Genes, 10, 248, https://doi.org/10.3390/genes10030248.
- Da Silva, L. P., Mata, V. A., Lopes, P. B., Pereira, P., Jarman, S. N., Lopes, R. J., and Beja, P. (2019) Advancing the integration of multi-marker metabarcoding data in dietary analysis of trophic generalists, Mol. Ecol. Resour., 19, 1420-1432, https://doi.org/10.1111/1755-0998.13060.
- Baensch, S., Tscharntke, T., Wuenschiers, R., Netter, L., Brenig, B., Gabriel, D., and Westphal, C. (2020) Using ITS2 metabarcoding and microscopy to analyse shifts in pollen diets of honey bees and bumble bees along a mass-flowering crop gradient, Mol. Ecol., 29, 5003-5018, https://doi.org/10.1111/mec.15675.
- Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P. F., Bellemain, E., Besnard, A., Coissac, E., Boyer, F., Gaboriaud, C., Jean, P., Poulet, N., Roset, N., Copp, G. H., Geniez, P., Pont, D., Argillier, C., Baudoin, J.-M., Peroux, Crivelli, A. J., Olivier, A., Acqueberge, M., Le Brun, M., Møller, P. R., Willerslev, E., and Dejean, T. (2016) Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding, Mol. Ecol., 25, 929-942, https://doi.org/10.1111/mec.13428.
- Carvalho, C.S., de Oliveira, M. E., Rodriguez-Castro, K. G., Saranholi, B. H., and Galetti, P. M. Jr. (2022) Efficiency of eDNA and iDNA in assessing vertebrate diversity and its abundance, Mol. Ecol. Resour., 22, 1262-1273, https://doi.org/10.1111/1755-0998.13543.
- Rimet, F., Aylagas, E., Borja, Á., Bouchez, A., Canino, A., Chauvin, C., Chonova, T., Ciampor F., Costa, F. O., Ferrari, B. J. D., Gastineau, R., Goulon, C., Gugger, M., Holzmann, M., Jahn, R., Kahlert, M., Kusber, W.-H., LaplaceTreyture, C., Leese, F., Leliaert, F., Mann, D. G., Marchand, F., Méléder, V., Pawlowski, J., Rasconi, S., Rivera, S., Rougerie, R., Schweizer, M., Trobajo, R., Vasselon, V., Vivien, R., Weigand, A., Witkowski, A., Zimmermann, J., and Ekrem, T. (2021) Metadata standards and practical guidelines for specimen and DNA curation when building barcode reference libraries for aquatic life, Metabarcoding Metagenom., 5, 17-33, https://doi.org/10.3897/mbmg.5.58056.
- Collins, R. A., and Cruickshank, R. H. (2013) The seven deadly sins of DNA barcoding, Mol. Ecol. Resour., 13, 969-975, https://doi.org/10.1111/1755-0998.12046.
- Zhou, Y., Trujillo-González, A., Nicol, S., Huerlimann, R., Sarre, S. D., and Gleeson, D. (2025) Evaluation of DNA barcoding reference databases for marine species in the western and central Pacific Ocean, PeerJ, 13, e19674, https://doi.org/10.7717/peerj.19674.
- Pentinsaari, M., Ratnasingham, S., Miller, S. E., and Hebert, P. D. N. (2020) BOLD and GenBank revisited – do identification errors arise in the lab or in the sequence libraries? PLoS One, 15, e0231814, https://doi.org/10.1371/journal.pone.0231814.
- Mulcahy, D. G., Ibáñez, R., Jaramillo, C. A., Crawford, A. J., Ray, J. M., Gotte S. W., Jacobs, J. F., Wynn A. H., Gonzalez-Porter, G. P., McDiarmid, R. W., Crombie, R. I., Zug, G. R., and de Queiroz, K. (2022) DNA barcoding of the National Museum of Natural History reptile tissue holdings raises concerns about the use of natural history collections and the responsibilities of scientists in the molecular age, PLoS One, 17, e0264930, https://doi.org/10.1371/journal.pone.0264930.
- Bickford, D., Lohman, D. J., Navjot S., Sodhi, N. S., Ng, P. K. L., Meier R., Winker, K., Ingram, K. K., and Das, I. (2007) Cryptic species as a window on diversity and conservation, Trends Ecol. Evol., 22, 148-155, https://doi.org/10.1016/j.tree.2006.11.004.
- Shekhovtsov, S. V., Bazarova, N. E., Lyubechanskii, I. I., Peltek, S. E., Berman, D. I., Bulakhova, N. A., Golovanova, E. V., Konyaev, S. V., and Krugova, T. M. (2017) DNA barcoding: how many earthworm species are there in the south of West Siberia? Russ. J. Genet. Appl. Res., 7, 57-62, https://doi.org/10.1134/S2079059717010130.
- Wang, T., Zhang, Y.-P., Yang, Z.-Y., Liu, Z., and Du, Y.-Y. (2020) DNA barcoding reveals cryptic diversity in the underestimated genus Triplophysa (Cypriniformes: Cobitidae, Nemacheilinae) from the northeastern QinghaiTibet Plateau, BMC Evol. Biol., 20, 151, https://doi.org/10.1186/s12862-020-01718-0.
- Page, R. D. M. (2016) DNA barcoding and taxonomy: dark taxa and dark texts, Phil. Trans. Roy. Soc. B., 371, 20150334, https://doi.org/10.1098/rstb.2015.0334.
- Hartop, E., Srivathsan, A., Ronquist, F., and Meier, R. (2022) Towards large-scale integrative taxonomy (LIT): resolving the data conundrum for dark taxa, Syst. Biol., 71, 1404-1422, https://doi.org/10.1093/sysbio/syac033.
- Muster, C., Spelda, J., Rulik, B., Thormann, J., von der Mark, L., and Astrin, J. J. (2021) The dark side of pseudoscorpion diversity: The German Barcode of Life campaign reveals high levels of undocumented diversity in European false scorpions, Ecol. Evol., 11, 13815-13829, https://doi.org/10.1002/ece3.8088.
- Morinière, J., Balke, M., Doczkal, D., Geiger, M. F., Hardulak, L. A., Haszprunar, G., Hausmann, A., Hendrich, L., Regalado, L., Rulik, B., Schmidt, S., Wägele, J.-W., and Hebert, P. D. N. (2019) A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcoding-based biomonitoring, Mol. Ecol. Resour., 19, 900-928, https://doi.org/10.1111/1755-0998.13022.
- Caruso V., Hartop, E., Chimeno, C., Noori, S., Srivathsan, A., Haas, M., Lee, L., Meier, R., and Whitmore, D (2024) An integrative framework for dark taxa biodiversity assessment at scale: A case study using Megaselia (Diptera, Phoridae), Insect. Conserv. Divers., 17, 968-987, https://doi.org/10.1111/icad.12762.
- Iwaszkiewicz-Eggebrecht, E., Goodsell, R. M., Bengsson, B.-Å., Mutanen, M., Klinth, M., van Dijk, L. J. A., Łukasik, P., Miraldo, A., Andersson, A., Tack, A. J. T. Roslin, T., and Ronquist, F. (2025) High-throughput biodiversity surveying sheds new light on the brightest of insect taxa. Proc. R. Soc. B, 292, 20242974, https://doi.org/10.1098/rspb.2024.2974.
- Preston, C. D., and Pearman, D. A. (2015) Plant hybrids in the wild: evidence from biological recording, Biol. J. Linn. Soc., 115, 555-572, https://doi.org/10.1111/bij.12577.
- Prančl, J., Koutecký, P., Lučanová, M., Nagy Nejedlá, M., Brožová, V., Dolejšek, V., Košnar, J., Trávníček, P., and Kaplan, Z. (2025) Identifying the richness and evolutionary relationships of Ranunculus sect. Batrachium in its diversity centre in south-western Europe, Sci. Rep., 15, 14008, https://doi.org/10.1038/s41598-025-98292-6.
- Bobrov, A. A., Volkova, P. A., Kopylov-Guskov, Yu. O., Mochalova, O. A., Kravchuk, A. E., and Nekrasova, D. M. (2022) Unknown sides of Utricularia (Lentibulariaceae) diversity in East Europe and North Asia or how hybridization explained old taxonomical puzzles, Perspect. Plant Ecol. Evol. Syst., 54, 125649, https://doi.org/10.1016/j.ppees.2021.125649.
- Bobrov, A. A., Volkova, P. A., Mochalova, O. A., and Chemeris, E. V. (2023) High diversity of aquatic Sparganium (Xanthosparganium, Typhaceae) in North Eurasia is mostly explained by recurrent hybridization, Perspect. Plant Ecol. Evol. Syst., 60, 125746, https://doi.org/10.1016/j.ppees.2023.125746.
- Meierotto, S., Sharkey, M. J., Janzen, D. H., Hallwachs, W., Chapman, E. G., Smith, M. A., and Hebert, P. D. N. (2019) A revolutionary protocol to describe understudied hyperdiverse taxa and overcome the taxonomic impediment, Dtsch. Entomol. Z., 66, 119-145, https://doi.org/10.3897/dez.66.34683.
- Ahrens, D. Ahyong, S. T., Ballerio, A., Barclay, M. V. L., Eberle, J., Espeland, M., Huber, B. A., Mengual, X., Pacheco, T. L., Peters, R. S., Rulik, B., Vaz-DE-Mello, F., Wesener, T., and Krell, F.-T. (2021) Is it time to describe new species without diagnoses? A comment on Sharkey et al. (2021), Zootaxa, 5027, 151-159, https://doi.org/10.11646/zootaxa.5027.2.1.
- Zamani, A., Vahtera, V., Sääksjärvi, I. E., and Scherz, M. (2021) The omission of critical data in the pursuit of ‘revolutionary’ methods to accelerate the description of species, Syst. Entomol., 46, 1-4, https://doi.org/10.1111/syen.12444.
- Meier, R., Blaimer, B., Buenaventura, E., Hartop, E., von Rintelen, T., Srivathsan, A., and Yeo D. (2021) A reanalysis of the data in Sharkey et al.’s (2021) minimalist revision reveals that BINs do not deserve names, but BOLD Systems needs a stronger commitment to open science, Cladistics, 38, 264-275, https://doi.org/10.1111/cla.12489.
- Sharkey, M. J., Tucker, E. M., Baker, A., Smith, M. A., Ratnasingham, S., Manjunath, R., Hebert, P., Hallwachs, W., and Janzen, D. (2022) More discussion of minimalist species descriptions and clarifying some misconceptions contained in Meier et al. 2021, ZooKeys, 135-149, https://doi.org/10.3897/zookeys.1110.85491.
- Hlebec, D., Sivec, I., Podnar, M., and Kučinić, M. (2022) DNA barcoding for biodiversity assessment: Croatian stoneflies (Insecta: Plecoptera), PeerJ, 10, e13213, https://doi.org/10.7717/peerj.13213.
- Ranasinghe, U. G. S. L., Eberle, J., Thormann, J., Bohacz, C., Benjamin, S. P., and Ahrens, D. (2022) Multiple species delimitation approaches with COI barcodes poorly fit each other and morphospecies – an integrative taxonomy case of Sri Lankan Sericini chafers (Coleoptera: Scarabaeidae), Ecol. Evol., 12, e8942, https://doi.org/10.1002/ece3.8942.
- Miralles, A., Puillandre, N., and Vences, M. (2024) DNA barcoding in species delimitation: from genetic distances to integrative taxonomy, Methods Mol. Biol., 2744, 77-104, https://doi.org/10.1007/978-1-0716-3581-0_4.
- Emerson, B. C. (2025) Delimiting species – prospects and challenges for DNA barcoding, Mol. Ecol., 34, e17677, https://doi.org/10.1111/mec.17677.
- Meier, R., Srivathsan, A., Oliveira, S. S., Balbi, M. I. P. A., Ang, Y., Yeo, D., Kjærandsen, J., and Amorim, D. S. (2025) “Dark taxonomy”: A new protocol for overcoming the taxonomic impediments for dark taxa and broadening the taxon base for biodiversity assessment, Cladistics, 41, 223-238, https://doi.org/10.1111/cla.12609.
- Hebert, P. D., Penton, E. H., Burns, J. M., Janzen, D. H., and Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator, Proc. Natl. Acad. Sci. USA, 101, 14812-14817, https://doi.org/10.1073/pnas.0406166101.
- Stork, N. (2018) How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol., 63, 31-45, https://doi.org/10.1146/annurev-ento-020117-04.
- Fernandes, T. J. R., Amaral, J. S., and Mafra, I. (2021) DNA barcode markers applied to seafood authentication: an updated review, Crit. Rev. Food Sci. Nutr., 61, 3904-3935, https://doi.org/10.1080/10408398.2020.1811200.
- Dawan, J., and Ahn, J. (2022) Application of DNA barcoding for ensuring food safety and quality, Food Sci. Biotechnol., 31,1355-1364, https://doi.org/10.1007/s10068-022-01143-7.
- . Soares, S., Rodrigues, F., and Delerue-Matos, C. (2023) Towards DNA-based methods analysis for honey: an update, Molecules, 28, 2106, https://doi.org/10.3390/ molecules28052106.
- . Raclariu, A. C., Heinrich, M., Ichim, M. C., and de Boer, H. (2018) Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication, Phytochem. Anal., 29, 123-128, https://doi.org/10.1002/pca.2732.
- . Yu, J., Wu, X., Liu, C., Newmaster, S., Ragupathy, S., and Kress, W. J. (2021) Progress in the use of DNA barcodes in the identification and classification of medicinal plants, Ecotox. Environ. Saf., 208, 111691, https://doi.org/10.1016/j.ecoenv.2020.111691.
- . Chen S., Yin, X., Han, J., Sun, W., Yao, H., Song, J., and Li, X. (2023) DNA barcoding in herbal medicine: Retrospective and prospective, J. Pharm. Anal., 13, 431-441, https://doi.org/10.1016/j.jpha.2023.03.008.
- . Meiklejohn, K. A., Jackson, M. L., Libby A. Stern, L. A., and Robertson, J. M. (2018) A protocol for obtaining DNA barcodes from plant and insect fragments isolated from forensic-type soils, Int. J. Legal Med., 132, 1515-1526, https://doi.org/10.1007/s00414-018-1772-1.
- . Chimeno, C., Moriniére, J., Podhorna, J., Hardulak, L., Hausmann, A., Reckel, F., Grunwald, J. E., Penning, R., and Haszprunar, G. (2019) DNA barcoding in forensic entomology – establishing a DNA reference library of potentially forensic relevant arthropod species, J. Forensic Sci., 64, 593-601, https://doi.org/10.1111/1556-4029.13869.
- . Wang, A., Gopurenko, D., Wu, H., and Lepschi, B. (2017) Evaluation of six candidate DNA barcode loci for identification of five important invasive grasses in eastern Australia, PLoS One, 12, e0175338, https://doi.org/10.1371/journal.pone.0175338.
- . Xu, S. Z., Li, Z. Y., and Jin, X. H. (2018) DNA barcoding of invasive plants in China: A resource for identifying invasive plants, Mol. Ecol. Resour., 18, 128-136, https://doi.org/10.1111/1755-0998.12715
- . Madden, M. J. L., Young, R. G., Brown, J. W., Miller, S. E., Frewin, A. J., and Hanner, R. H. (2019) Using DNA barcoding to improve invasive pest identification at U.S. ports-of-entry, PLoS One, 14, e0222291, https://doi.org/10.1371/journal.pone.0222291.
- . Mendoza, Á. M., Torres, M. F., Paz, A., Trujillo-Arias, N., López-Alvarez, D., Sierra, S., Forero, F., and Gonzalez, M. A. (2016) Cryptic diversity revealed by DNA barcoding in Colombian illegally traded bird species, Mol. Ecol. Resour., 16, 862-873, https://doi.org/10.1111/1755-0998.12515.
- . De Boer, H. J., Ghorbani, A., Manzanilla, V., Raclariu, A.-C., Kreziou, A., Ounjai, S., Osathanunkul, M., and Gravendeel, B. (2017) DNA metabarcoding of orchid-derived products reveals widespread illegal orchid trade, Proc. R. Soc. B, 284, 20171182, https://doi.org/10.1098/rspb.2017.1182.
- . Onyia, C. O., Ilo, O. P., Obih, C. E., Ugbogu, O., Ojiego, B. O., Rufai, S. S., Onyemaechi, P. S., and Chukwuma, E. C. (2022) DNA barcoding of Nigeria’s forest species listed in CITES and other endangered plant species of national interest, Amer. J. Plant Sci., 13, 1335-1346, https://doi.org/10.4236/ajps.2022.1311090.
- . Zhou, L.-W. (2024) The strategy for naming fungal ‘dark taxa’ may involve a transition period and genomics, Fungal Biol. Rev., 48, 100358, https://doi.org/10.1016/j.fbr.2024.100358.
- . Rodionov, A. V. (2023) Eupolyploidy as a mode in plant speciation, Russ. J. Genet., 59, 419-431, https://doi.org/10.1134/s1022795423050113.
- . Wood, T. E., Takebayashi, N., Barker, M. S., Mayrose, I., Greenspoond, P. B., and Loren, H., and Riesebergb, L. H. (2009) The frequency of polyploid speciation in vascular plants, Proc. Natl. Acad. Sci. USA, 106, 13875-13879, https://doi.org/10.1073/pnas.0811575106.
- . Rodionov, A. V., Gnutikov, A. A., Nosov, N. N., Mikhaylova, Y. V., Shneyer, V. S., and Punina, E. O. (2020) Intragenomic polymorphism of the ITS 1 region of 35S rRNA gene in the group of grasses with two-chromosome species: different genome composition in closely related Zingeria species, Plants, 9, 1647, https://doi.org/10.3390/plants9121647.
- . Suissa, J. S., Kinosian, S. P., Schafran, P. W., Bolin, J. F., Taylor, W. C., and Zimmer, E. A. (2022) Homoploid hybrids, allopolyploids, and high ploidy levels characterize the evolutionary history of a western North American quillwort (Isoëtes) complex, Mol. Phyl. Evol., 166, 107332, https://doi.org/10.1016/j.ympev.2021.107332.
- . Punina, E. O., Mikhaylova, Y. V., Shneyer, V. S., Krapivskaya, E. E., Machs, E. M., and Rodionov, A. V. (2024) Intragenomic polymorphism of the 35S rDNA internal transcribed spacers (ITS) in three species and three interspecific hybrids of Pulsatilla (Ranunculaceae), Turczaninowia, 27, 67-85, https://doi.org/10.14258/turczaninowia.27.4.8.
- . Kartavtsev Y.P., Batischeva N.M., Katugina A.O., Bogutskaya N.G., Hanzawa N. (2017) Molecular systematics and DNA barcoding of Altai osmans, Oreoleuciscus (Pisces, Cyprinidae, and Leuciscinae), and their nearest relatives, inferred from sequences of cytochrome B (Cyt-B), cytochrome oxidase C (Co-1), and complete mitochondrial genome, Mitochondrial DNA A DNA Mapp. Seq. Anal., 28, 502-517, https://doi.org/10.3109/24701394.2016.1149822.
- . Levin, B.A., Simonov, E., Matveyev, M. P., Artaev, O. N., Mustafayev, N. J., Pashkov, A. N., and Roubenyan, H. R. (2018) DNA barcoding of the fishes of the genus Alburnoides (Actinopterygii, Cyprinidae) from Caucasus, Mitochondrial DNA Part A: DNA Mapp. Seq. Anal., 29, 49-55, https://doi.org/10.1080/24701394.2016.1238900.
- . Turanov, S. V., and Kartavtsev, Y. Ph. (2021) A complement to DNA barcoding reference library for identification of fish from the Northeast Pacific, Genome, 64, 927-936, https://doi.org/10.1139/gen-2020-0192.
- . Орлова С. Ю., Емельянова О. Р., Небесихина Н. А., Рабазанов Н. И., Орлов А. М. (2024) Проблемы ДНКштрихкодирования пузанковых сельдей рода Alosa (Alosidae) Понто-Каспийского бассейна, Вопр. Ихтиол., 64, 363-376, https://doi.org/10.31857/S0042875224030101.
- . Gorobeyko, U. V., Kartavtseva, I. V., Sheremetyeva, I. N., Kazakov, D. V., and Guskov, V. Yu. (2020) DNA-barcoding and a new data about the karyotype of Myotis petax (Chiroptera, Vespertilionidae) in the Russian Far East, Comp. Cytogen., 14, 483-500, https://doi.org/10.3897/CompCytogen.v14.i4.54955.
- . Abramson, N., Petrova, T., and Dokuchaev, N. (2022) Analysis of “historical” DNA of museum samples resolve taxonomic, nomenclature and biogeography issues: case study of true lemmings, Biol. Comm., 67, 340-348, https://doi.org/10.21638/spbu03.2022.408.
- . Doronina, M. A., Doronin, I. V., Lukonina, S. A., Mazanaeva, L. F., Lotiev, K. Yu., and Ananjeva, N. B. (2023) Application of DNA barcoding to the study of green lizards (Sauria: Lacertidae: Lacerta), Russ. J. Genet., 59, 297-306, https://doi.org/10.1134/s1022795423030031.
- . Fefilova, E., Novikov, A., Popova, E., Golubev, M., Bakashkina, A., and Velegzhaninov, I. (2024) Evaluating the effectiveness of DNA barcoding for genetic identification of Canthocamptidae (Harpacticoida, Copepoda) of Lake Baikal, Zool. Syst., 49, 285-298, https://doi.org/10.11865/zs.2024402CSTR:32106.14.
- . Bespalaya, Y. V., Bolotov, I. N., Aksenova, O. V., Gofarov, M. Y., Kondakov, A. V., Vikhrev, I. V., and Vinarski, M. V. (2018) DNA barcoding reveals invasion of two cryptic Sinanodonta mussel species (Bivalvia: Unionidae) into the largest siberian river, Limnologica, 69, 94-102, https://doi.org/10.1016/j.limno.2017.11.009.
- . Lukhtanov, V. A., Dantchenko, A. V., Balayan, K. V., and Gagarina, A. V. (2020) Karyotype and DNA barcode of Polyommatus (Agrodiaetus) cyaneus (Staudinger, 1899) from its type locality: implication for taxonomic and evolutionary research in Polyommatus blue butterflies (Lepidoptera, Lycaenidae), Comp. Cytogen., 14, 567-575, https://doi.org/10.3897/CompCytogen.v14.i4.59574.
- . Kirichenko, N. I., Zakharov, E. V., and Lopez-Vaamonde, C. (2022) Tracing the invasion of a leaf-mining moth in the palearctic through DNA barcoding of historical herbaria, Sci. Rep., 12, 5065, https://doi.org/10.1038/s41598-022-08894-7.
- . Kulakova, O. I., Tatarinov, A. G., and Shadrin, D. M. (2022) Species composition of wood whites of the genus Leptidea Billberg (Lepidoptera, Pieridae) in northeastern Europe based on DNA barcoding, Entomol. Rev., 102, 996-1003, https://doi.org/10.1134/s0013873822070090.
- . Krivosheeva, V., Solodovnikov, A., Shulepov, A., Semerikova, D, Ivanova, A., and Salnitska, M. (2023) Assessment of the DNA barcode libraries for the study of the poorly-known rove beetle (Staphylinidae) fauna of West Siberia, Biodivers. Data J., 11, e115477, https://doi.org/10.3897/BDJ.11.e115477.
- . Makarchenko, E. A., Semenchenko, A. A., Krasheninnikov, A. B., Yanygina, L. V., and Yavorskaya, N. M. (2024) Review of archaic nymphomyiids (Diptera, Nymphomyiidae) of the Russian Far East and bordering territories, with describing of new taxa and DNA barcoding of known species, Zootaxa, 5448, 183-211, https://doi.org/10.11646/zootaxa.5448.2.2.
- . Semenchenko, A., and Tiunova, T. M. (2025) DNA barcoding of mayflies (Ephemeroptera) in Kamchatka peninsula, Russia, Far East. Entomol., 533, 7-19, https://doi.org/10.25221/fee.533.2.
- . Klimov, P. B., Stolbov, V. A., Kazakov, D. V., Filimonova, M. O., and Sheykin, S. D. (2022) A DNA Barcoding and photo-documentation resource of water mites (Acariformes, Hydrachnidia) of Siberia: accurate species identification for global climate change monitoring programs, Syst. Appl. Acarol., 27, 2493, https://doi.org/10.11158/saa.27.12.8.
- . Chetverikov, P. E., Burlakovskiy, M. S., Paponova, S. S., Sukhareva, S. I., Klimov, P., Bolton, S. J., Craemer, C., Efimov, P. G., Neser, S., Romanovich, A., and Amrine, J. (2019) Supplementary descriptions and DNA barcodes of two rarely encountered Trisetacus species (Eriophyoidea, Phytoptidae) associated with tertiary relict conifers from the mediterranean region, Syst. Appl. Acarol., 24, 1631-1652, https://doi.org/10.11158/saa.24.9.5.
- . Shekhovtsov, S. V., Peltek, S. E., Sundukov, Y. N., Blakemore, R. J., and Gongalsky, K. B. (2017) Identifying earthworms (Oligochaeta, Megadrili) of the southern Kuril Islands using DNA barcodes, Animal Biodivers. Conserv., 41, 9-17, https://doi.org/10.32800/abc.2018.41.0009.
- . Latif, R., Aminjan, A. R., Malek, M., Shekhovtsov, S. V., Poluboyarova, T. V., and Briones, M. J. I. (2025) Barcode gap delimitation and phylogenetic analyses in integrative earthworm taxonomy: Dendrobaena byblica complex, Zootaxa, 5589, 68-79, https://doi.org/10.11646/zootaxa.5589.1.7.
- . Kaygorodova, I., Bolbat, N., and Bolbat, A (2020) Species delimitation through DNA barcoding of freshwater leeches of the Glossiphonia genus (Hirudinea: Glossiphoniidae) from Eastern Siberia, Russia, J. Syst. Evol. Res., 58, 1437-1446, https://doi.org/10.1111/jzs.12385.
- . Baturina, M. A., Golubev, M. A., Bakashkina, A. S., and Marchenko, J. V. (2025) The first results of DNA barcoding of freshwater Oligochaeta (Annelida) of the European North-East of Russia, Limnol. Freshw. Biol., 4, 414-427, https://doi.org/10.31951/2658-3518-2025-A-4-414.
- . Tumanov, D. (2021) Presence of Notahypsibius pallidoides (Tardigrada: Hypsibiidae) in the fauna of Russia confirmed with the methods of DNA barcoding, Biol. Comm., 66, 274-280, https://doi.org/10.21638/spbu03.2021.309.
- . Nuzhdina, N. S., Erofeeva, A. S., Bondar, A. A., and Kovtonyuk, N. K. (2024) DNA barcoding of some endangered plant species of the Altai Mountains based on five genetic markers, Botanica Pacifica, 13, 193-196, https://doi.org/10.17581/bp.2024.13113.
- . Erst, A. S., Nikulin, A. Yu., Nikulin, V. Yu., Ebel, A. L., Zibzeev, E. V., Sharples, M. T., Baasanmunkh, S., Choi, H. J. A. E., Olonova, M. V., Pyak, A. I., Gureyeva, I. I., Erst, T. V., Kechaykin, A., Luferov, A., Maltseva, S. Yu., Nobis, M., Lian, L., and Wang, W. (2022) Distribution analysis, updated checklist, and DNA barcodes of the endemic vascular flora of the Altai mountains, a Siberian biodiversity hotspot, Syst. Biodivers., 20, 1-30, https://doi.org/10.1080/14772000.2022.2049391.
- . Shadrin, D. M., Dalke, I. V., Zakhozhiy, I. G., Shilnikov, D. S., Kozhin, M. N., and Chadin, I. F. (2024) DNA barcode marker analysis of Heracleum sosnowskyi Manden. and Heracleum mantegazzianum Sommier & Levier (Apiaceae) from European Russia, Russ. J. Biol. Invasions, 15, 416-431, https://doi.org/10.1134/S2075111724700309.
- . Vaganov, A. V., Sinitsyna, T. A., Kutsev, M. G., Skaptsov, M. V., Zholnerova, E. A., Kosachev, P. A., Kechaykin, A. A., Smirnov S. V., and Shmakov, A. I. (2022) DNA barcodes of the vascular flora of the Altai Mountain Country: type material of the Herbarium ALTB, Turczaninowia, 25, 5-11, https://doi.org/10.14258/turczaninowia.25.4.1.
- . Samarina, L. S., Koninskaya, N. G., Shkhalakhova, R. M., Simonyan, T. A., and Kuzmina, D. O. (2025) DNA-barcoding for cultivar identification and intraspecific diversity analysis of agricultural crops, Int. J. Mol. Sci., 26, 6808, https://doi.org/10.3390/ijms26146808.
- . Bukin, Yu. S., Mikhailov, I. S., Petrova, D. P., Galachyants, Yu. P., Zakharova, Yu. R., and Likhoshway, Ye. V. (2023) The effect of metabarcoding 18S RRNA region choice on diversity of microeukaryotes including phytoplankton, World J. Microbiol. Biotechnol., 39, 229, https://doi.org/10.1007/s11274-023-03678-1.
- . Lukyanov, V., Gaysina, L., Bukin, Yu., Renganathan, P., and Tupikin, A. (2024) DNA-metabarcoding of cyanobacteria and microalgae in chernozem soils of temperate continental climate of the forest-steppe zone of Eurasia under different degrees of agrotechnology intensification, World J. Microbiol. Biotechnol., 40, 351, https://doi.org/10.1007/s11274-024-04133-5.
- . Filippova, N., Zvyagina, E., Rudykina, E. A., Ishmanov, T. F., Filippov, I. V., Bulyonkova, T. M., and Dobrynina, A. S. (2024) DNA-based occurrence dataset on peatland fungal communities studied by metabarcoding in north-western Siberia, Biodivers. Data J., 12, e119851, https://doi.org/10.3897/BDJ.12.e119851.
- . Shchepin, O. N., López Villalba, Á., Inoue, M., Prikhodko, I. S., Erastova, D. A., Okun, M. V., Woyzichovski, J., Yajima, Y., Gmoshinskiy, V. I., Moreno, G., Novozhilov, Yu. K., and Schnittler, M. (2024) DNA barcodes reliably differentiate between nivicolous species of Diderma (Myxomycetes, Amoebozoa) and reveal regional differences within Eurasia, Protist, 175, 126023, https://doi.org/10.1016/j.protis.2024.126023.
- . Kolesnikova, A. I., Pavlov, I. N., Litovka, Y. A., Oreshkova, N. V., Timofeev, A. A., Litvinova, E. A., Petrenko, S. M., and Krutovsky, K. V. (2024) Molecular identification of wood-decaying fungi of Armillaria genus widespread in Eastern Siberia and the Far East of Russia using ITS, IGS-1-1 and Tef-1α genetic markers, Mycol. Phytopathol., 58, 231-245, https://doi.org/10.31857/S0026364824030052.
- . Psurtseva, N. V., Kiyashko, A. A., Senik, S. V., and Pham, T. H. G. (2025) Ex situ conservation, DNA barcoding and enzymatic potential evaluation of macrofungi (Basidiomycota, Ascomycota) from Vietnam, J. Fungi, 11, 34, https://doi.org/10.3390/jof11010034.
- . Syromyatnikov, M. Y., Golub, V. B., Kokina, A. V., Soboleva, V. A., and Popov, V. N. (2017) DNA barcoding and morphological analysis for rapid identification of most economically important crop-infesting sunn pests belonging to Eurygaster Laporte, 1833 (Hemiptera, Scutelleridae), ZooKeys, 706, 51-71, https://doi.org/10.3897/zookeys.706.13888.
- . Nedunoori, A., Turanov, S. V., and Kartavtsev, Y. P (2017) Fish product mislabeling identified in the Russian Far East using DNA barcoding, Gene Rep., 8, 144-149, https://doi.org/10.1016/j.genrep.2017.07.006.
- . Syromyatnikov, M. Yu., Kokina, A. V., Savinkova, O. V., Panevina, A. V., Solodskikh, S. A., Orlova, M. V., Grabovich, M. Yu., Starkov, A. A., and Popov, V. N. (2018) Study of the microbiological composition of dairy products and mayonnaise using DNA barcoding and metabarcoding, Foods Raw Mater., 6, 144-153, https://doi.org/10.21603/2308-4057-2018-1-144-153.
Қосымша файлдар

